{"title":"Yang-Mills All-Plus:一环一环","authors":"D. Kosower, Sebastian Pogel","doi":"10.22323/1.416.0031","DOIUrl":null,"url":null,"abstract":"We present work on two-loop amplitudes in pure Yang–Mills theory with all gluons of identical helicity. We show how to obtain their rational terms — the hardest parts to compute — via well-understood one-loop unitarity techniques.","PeriodicalId":151433,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Yang–Mills All-Plus: Two Loops for the Price of One\",\"authors\":\"D. Kosower, Sebastian Pogel\",\"doi\":\"10.22323/1.416.0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present work on two-loop amplitudes in pure Yang–Mills theory with all gluons of identical helicity. We show how to obtain their rational terms — the hardest parts to compute — via well-understood one-loop unitarity techniques.\",\"PeriodicalId\":151433,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.416.0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.416.0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Yang–Mills All-Plus: Two Loops for the Price of One
We present work on two-loop amplitudes in pure Yang–Mills theory with all gluons of identical helicity. We show how to obtain their rational terms — the hardest parts to compute — via well-understood one-loop unitarity techniques.