使用同态加密的联邦学习安全神经成像分析

Dimitris Stripelis, Hamza Saleem, Tanmay Ghai, N. Dhinagar, Umang Gupta, Chrysovalantis Anastasiou, G. V. Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, J. Ambite
{"title":"使用同态加密的联邦学习安全神经成像分析","authors":"Dimitris Stripelis, Hamza Saleem, Tanmay Ghai, N. Dhinagar, Umang Gupta, Chrysovalantis Anastasiou, G. V. Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, J. Ambite","doi":"10.1117/12.2606256","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) enables distributed computation of machine learning models over various disparate, remote data sources, without requiring to transfer any individual data to a centralized location. This results in an improved generalizability of models and efficient scaling of computation as more sources and larger datasets are added to the federation. Nevertheless, recent membership attacks show that private or sensitive personal data can sometimes be leaked or inferred when model parameters or summary statistics are shared with a central site, requiring improved security solutions. In this work, we propose a framework for secure FL using fullyhomomorphic encryption (FHE). Specifically, we use the CKKS construction, an approximate, floating point compatible scheme that benefits from ciphertext packing and rescaling. In our evaluation on large-scale brain MRI datasets, we use our proposed secure FL framework to train a deep learning model to predict a person’s age from distributed MRI scans, a common benchmarking task, and demonstrate that there is no degradation in the learning performance between the encrypted and non-encrypted federated models.","PeriodicalId":147201,"journal":{"name":"Symposium on Medical Information Processing and Analysis","volume":"637 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Secure neuroimaging analysis using federated learning with homomorphic encryption\",\"authors\":\"Dimitris Stripelis, Hamza Saleem, Tanmay Ghai, N. Dhinagar, Umang Gupta, Chrysovalantis Anastasiou, G. V. Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, J. Ambite\",\"doi\":\"10.1117/12.2606256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) enables distributed computation of machine learning models over various disparate, remote data sources, without requiring to transfer any individual data to a centralized location. This results in an improved generalizability of models and efficient scaling of computation as more sources and larger datasets are added to the federation. Nevertheless, recent membership attacks show that private or sensitive personal data can sometimes be leaked or inferred when model parameters or summary statistics are shared with a central site, requiring improved security solutions. In this work, we propose a framework for secure FL using fullyhomomorphic encryption (FHE). Specifically, we use the CKKS construction, an approximate, floating point compatible scheme that benefits from ciphertext packing and rescaling. In our evaluation on large-scale brain MRI datasets, we use our proposed secure FL framework to train a deep learning model to predict a person’s age from distributed MRI scans, a common benchmarking task, and demonstrate that there is no degradation in the learning performance between the encrypted and non-encrypted federated models.\",\"PeriodicalId\":147201,\"journal\":{\"name\":\"Symposium on Medical Information Processing and Analysis\",\"volume\":\"637 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Medical Information Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2606256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Medical Information Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2606256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

联邦学习(FL)支持在各种不同的远程数据源上对机器学习模型进行分布式计算,而不需要将任何单个数据传输到集中位置。随着更多的数据源和更大的数据集被添加到联合中,这将提高模型的通用性,并有效地扩展计算。然而,最近的成员攻击表明,当模型参数或汇总统计数据与中心站点共享时,私人或敏感的个人数据有时会泄露或推断出来,这需要改进的安全解决方案。在这项工作中,我们提出了一个使用全同态加密(FHE)的安全FL框架。具体来说,我们使用CKKS结构,这是一种近似的浮点兼容方案,受益于密文打包和重新缩放。在我们对大规模脑MRI数据集的评估中,我们使用我们提出的安全FL框架来训练一个深度学习模型,以从分布式MRI扫描中预测一个人的年龄,这是一个常见的基准测试任务,并证明加密和非加密联邦模型之间的学习性能没有下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure neuroimaging analysis using federated learning with homomorphic encryption
Federated learning (FL) enables distributed computation of machine learning models over various disparate, remote data sources, without requiring to transfer any individual data to a centralized location. This results in an improved generalizability of models and efficient scaling of computation as more sources and larger datasets are added to the federation. Nevertheless, recent membership attacks show that private or sensitive personal data can sometimes be leaked or inferred when model parameters or summary statistics are shared with a central site, requiring improved security solutions. In this work, we propose a framework for secure FL using fullyhomomorphic encryption (FHE). Specifically, we use the CKKS construction, an approximate, floating point compatible scheme that benefits from ciphertext packing and rescaling. In our evaluation on large-scale brain MRI datasets, we use our proposed secure FL framework to train a deep learning model to predict a person’s age from distributed MRI scans, a common benchmarking task, and demonstrate that there is no degradation in the learning performance between the encrypted and non-encrypted federated models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信