多模态显微图像配准的结构相似性检测

Guohua Lv, S. Teng, Guojun Lu, M. Lackmann
{"title":"多模态显微图像配准的结构相似性检测","authors":"Guohua Lv, S. Teng, Guojun Lu, M. Lackmann","doi":"10.1109/DICTA.2013.6691495","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel method to detect the structural similarity in registering color and confocal microscopic images. Our prior work presented the basic idea of detecting the structural similarity of such images, which utilizes the intensity relationships among red-green-blue color channels. The work in this paper will make the detection of structural similarity automatic and adaptive to each individual color microscopic image. The experimental results will demonstrate the effectiveness of the proposed method in detecting the structural similarity of these images and significant improvements in the registration performance.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detection of Structural Similarity for Multimodal Microscopic Image Registration\",\"authors\":\"Guohua Lv, S. Teng, Guojun Lu, M. Lackmann\",\"doi\":\"10.1109/DICTA.2013.6691495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel method to detect the structural similarity in registering color and confocal microscopic images. Our prior work presented the basic idea of detecting the structural similarity of such images, which utilizes the intensity relationships among red-green-blue color channels. The work in this paper will make the detection of structural similarity automatic and adaptive to each individual color microscopic image. The experimental results will demonstrate the effectiveness of the proposed method in detecting the structural similarity of these images and significant improvements in the registration performance.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种检测彩色显微图像和共聚焦显微图像结构相似性的新方法。我们之前的工作提出了检测此类图像结构相似性的基本思想,该思想利用红-绿-蓝颜色通道之间的强度关系。本文的工作将使结构相似度的检测自动化,并适应于每个单独的彩色显微图像。实验结果证明了该方法在检测图像结构相似性方面的有效性,并显著提高了配准性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Structural Similarity for Multimodal Microscopic Image Registration
In this paper we propose a novel method to detect the structural similarity in registering color and confocal microscopic images. Our prior work presented the basic idea of detecting the structural similarity of such images, which utilizes the intensity relationships among red-green-blue color channels. The work in this paper will make the detection of structural similarity automatic and adaptive to each individual color microscopic image. The experimental results will demonstrate the effectiveness of the proposed method in detecting the structural similarity of these images and significant improvements in the registration performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信