TSAR-2022共享任务:上下文如何影响bert生成的词汇简化替代?

Rodrigo Wilkens, David Alfter, Rémi Cardon, Isabelle Gribomont, Adrien Bibal, Watrin Patrick, Marie-Catherine de Marneffe, Thomas François
{"title":"TSAR-2022共享任务:上下文如何影响bert生成的词汇简化替代?","authors":"Rodrigo Wilkens, David Alfter, Rémi Cardon, Isabelle Gribomont, Adrien Bibal, Watrin Patrick, Marie-Catherine de Marneffe, Thomas François","doi":"10.18653/v1/2022.tsar-1.25","DOIUrl":null,"url":null,"abstract":"Lexical simplification is the task of substituting a difficult word with a simpler equivalent for a target audience. This is currently commonly done by modeling lexical complexity on a continuous scale to identify simpler alternatives to difficult words. In the TSAR shared task, the organizers call for systems capable of generating substitutions in a zero-shot-task context, for English, Spanish and Portuguese. In this paper, we present the solution we (the {textsc{cental} team) proposed for the task. We explore the ability of BERT-like models to generate substitution words by masking the difficult word. To do so, we investigate various context enhancement strategies, that we combined into an ensemble method. We also explore different substitution ranking methods. We report on a post-submission analysis of the results and present our insights for potential improvements. The code for all our experiments is available at https://gitlab.com/Cental-FR/cental-tsar2022.","PeriodicalId":247582,"journal":{"name":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","volume":"28 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CENTAL at TSAR-2022 Shared Task: How Does Context Impact BERT-Generated Substitutions for Lexical Simplification?\",\"authors\":\"Rodrigo Wilkens, David Alfter, Rémi Cardon, Isabelle Gribomont, Adrien Bibal, Watrin Patrick, Marie-Catherine de Marneffe, Thomas François\",\"doi\":\"10.18653/v1/2022.tsar-1.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lexical simplification is the task of substituting a difficult word with a simpler equivalent for a target audience. This is currently commonly done by modeling lexical complexity on a continuous scale to identify simpler alternatives to difficult words. In the TSAR shared task, the organizers call for systems capable of generating substitutions in a zero-shot-task context, for English, Spanish and Portuguese. In this paper, we present the solution we (the {textsc{cental} team) proposed for the task. We explore the ability of BERT-like models to generate substitution words by masking the difficult word. To do so, we investigate various context enhancement strategies, that we combined into an ensemble method. We also explore different substitution ranking methods. We report on a post-submission analysis of the results and present our insights for potential improvements. The code for all our experiments is available at https://gitlab.com/Cental-FR/cental-tsar2022.\",\"PeriodicalId\":247582,\"journal\":{\"name\":\"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)\",\"volume\":\"28 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.tsar-1.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.tsar-1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

词汇简化是指为目标受众用较简单的对应词代替较难的词。目前,这通常是通过在连续尺度上对词汇复杂性进行建模来识别难词的简单替代词来完成的。在TSAR共享任务中,组织者要求系统能够在零射门任务上下文中生成替换,用于英语,西班牙语和葡萄牙语。在本文中,我们提出了我们({textsc{central}团队)为该任务提出的解决方案。我们探索了类bert模型通过屏蔽难词来生成替代词的能力。为此,我们研究了各种上下文增强策略,并将其组合成一个集成方法。我们还探讨了不同的替代排序方法。我们报告提交后的结果分析,并提出我们对潜在改进的见解。我们所有实验的代码都可以在https://gitlab.com/Cental-FR/cental-tsar2022上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CENTAL at TSAR-2022 Shared Task: How Does Context Impact BERT-Generated Substitutions for Lexical Simplification?
Lexical simplification is the task of substituting a difficult word with a simpler equivalent for a target audience. This is currently commonly done by modeling lexical complexity on a continuous scale to identify simpler alternatives to difficult words. In the TSAR shared task, the organizers call for systems capable of generating substitutions in a zero-shot-task context, for English, Spanish and Portuguese. In this paper, we present the solution we (the {textsc{cental} team) proposed for the task. We explore the ability of BERT-like models to generate substitution words by masking the difficult word. To do so, we investigate various context enhancement strategies, that we combined into an ensemble method. We also explore different substitution ranking methods. We report on a post-submission analysis of the results and present our insights for potential improvements. The code for all our experiments is available at https://gitlab.com/Cental-FR/cental-tsar2022.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信