基于改进相似度计算的图书推荐算法

Yue Li
{"title":"基于改进相似度计算的图书推荐算法","authors":"Yue Li","doi":"10.1109/ICMCCE.2018.00135","DOIUrl":null,"url":null,"abstract":"Rcommendation system can solve the information overload in mass data and recommend content that users are interested in. User similarity calculation is a common recommendation algorithm, but the traditional algorithm only considers the similarity between user-item ratings and ignores the influence of users' inherent characteristics. This paper presents an algorithm combining user feature similarity and user-item rating similarity, and proposes to use F1 indicator to evaluate the efficiency of the recommendation algorithm. The hexperimental results show that the improved algorithm can effectively improve the recommendation effect.","PeriodicalId":198834,"journal":{"name":"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Book Recommendation Algorithm Based on Improved Similarity Calculation\",\"authors\":\"Yue Li\",\"doi\":\"10.1109/ICMCCE.2018.00135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rcommendation system can solve the information overload in mass data and recommend content that users are interested in. User similarity calculation is a common recommendation algorithm, but the traditional algorithm only considers the similarity between user-item ratings and ignores the influence of users' inherent characteristics. This paper presents an algorithm combining user feature similarity and user-item rating similarity, and proposes to use F1 indicator to evaluate the efficiency of the recommendation algorithm. The hexperimental results show that the improved algorithm can effectively improve the recommendation effect.\",\"PeriodicalId\":198834,\"journal\":{\"name\":\"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCCE.2018.00135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCCE.2018.00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统可以解决海量数据中的信息过载问题,推荐用户感兴趣的内容。用户相似度计算是一种常见的推荐算法,但传统算法只考虑用户-物品评分之间的相似度,忽略了用户固有特征的影响。本文提出了一种结合用户特征相似度和用户-物品评分相似度的推荐算法,并提出使用F1指标来评价推荐算法的效率。实验结果表明,改进后的算法可以有效地提高推荐效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Book Recommendation Algorithm Based on Improved Similarity Calculation
Rcommendation system can solve the information overload in mass data and recommend content that users are interested in. User similarity calculation is a common recommendation algorithm, but the traditional algorithm only considers the similarity between user-item ratings and ignores the influence of users' inherent characteristics. This paper presents an algorithm combining user feature similarity and user-item rating similarity, and proposes to use F1 indicator to evaluate the efficiency of the recommendation algorithm. The hexperimental results show that the improved algorithm can effectively improve the recommendation effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信