一般大象用一维纤维进行三次极端收缩:例外情况

Prokhorov Yuri, Mori Shigefumi
{"title":"一般大象用一维纤维进行三次极端收缩:例外情况","authors":"Prokhorov Yuri, Mori Shigefumi","doi":"10.1070/sm9388","DOIUrl":null,"url":null,"abstract":"Let $(X, C)$ be a germ of a threefold $X$ with terminal singularities along a connected reduced complete curve $C$ with a contraction $f : (X, C) \\to (Z, o)$ such that $C = f^{-1} (o)_{\\mathrm{red}}$ and $-K_X$ is $f$-ample. Assume that each irreducible component of $C$ contains at most one point of index $>2$. We prove that a general member $D\\in |{-}K_X|$ is a normal surface with Du Val singularities.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"General elephants for threefold extremal contractions with one-dimensional fibers: exceptional case\",\"authors\":\"Prokhorov Yuri, Mori Shigefumi\",\"doi\":\"10.1070/sm9388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(X, C)$ be a germ of a threefold $X$ with terminal singularities along a connected reduced complete curve $C$ with a contraction $f : (X, C) \\\\to (Z, o)$ such that $C = f^{-1} (o)_{\\\\mathrm{red}}$ and $-K_X$ is $f$-ample. Assume that each irreducible component of $C$ contains at most one point of index $>2$. We prove that a general member $D\\\\in |{-}K_X|$ is a normal surface with Du Val singularities.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/sm9388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/sm9388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设$(X, C)$是沿连通简化完全曲线$C$具有端点奇点的三重$X$的一个子代,具有缩约$f: (X, C) \to (Z, o)$,使得$C = f^{-1} (o)_{\ maththrm {red}}$和$-K_X$为$f$-ample。假设$C$的每个不可约分量最多包含一个索引$>2$的点。证明了|{-}K_X|$中的一般元$D\是具有Du - Val奇点的法线曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General elephants for threefold extremal contractions with one-dimensional fibers: exceptional case
Let $(X, C)$ be a germ of a threefold $X$ with terminal singularities along a connected reduced complete curve $C$ with a contraction $f : (X, C) \to (Z, o)$ such that $C = f^{-1} (o)_{\mathrm{red}}$ and $-K_X$ is $f$-ample. Assume that each irreducible component of $C$ contains at most one point of index $>2$. We prove that a general member $D\in |{-}K_X|$ is a normal surface with Du Val singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信