基于生成网络的无人机遥感多媒体超分辨率

Yash Turkar, C. Aluckal, S. De, V. Turkar, Y. Agarwadkar
{"title":"基于生成网络的无人机遥感多媒体超分辨率","authors":"Yash Turkar, C. Aluckal, S. De, V. Turkar, Y. Agarwadkar","doi":"10.1109/IGARSS46834.2022.9884486","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicle (UAV) based aerial mapping has taken over the surveying industry thanks to low costs and ease of use. Although these UAVs have relatively high-resolution imaging systems, there exists a near exponential relationship between the ground sampling distance (GSD) and the number of images required - which is a function of flight altitude. To tackle this, we use a generative network based super-resolution approach to increase the GSD of images which effectively reduces flight time. In this paper we test the efficiency and efficacy of this approach using two multimedia super-resolution implementations. We also provide quantitative results comparing the two using various image processing metrics.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative-Network Based Multimedia Super-Resolution for Uav Remote Sensing\",\"authors\":\"Yash Turkar, C. Aluckal, S. De, V. Turkar, Y. Agarwadkar\",\"doi\":\"10.1109/IGARSS46834.2022.9884486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned Aerial Vehicle (UAV) based aerial mapping has taken over the surveying industry thanks to low costs and ease of use. Although these UAVs have relatively high-resolution imaging systems, there exists a near exponential relationship between the ground sampling distance (GSD) and the number of images required - which is a function of flight altitude. To tackle this, we use a generative network based super-resolution approach to increase the GSD of images which effectively reduces flight time. In this paper we test the efficiency and efficacy of this approach using two multimedia super-resolution implementations. We also provide quantitative results comparing the two using various image processing metrics.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9884486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于无人机(UAV)的航空测绘由于低成本和易于使用而接管了测量行业。尽管这些无人机具有相对高分辨率的成像系统,但地面采样距离(GSD)和所需图像数量之间存在接近指数的关系-这是飞行高度的函数。为了解决这个问题,我们使用基于生成网络的超分辨率方法来增加图像的GSD,从而有效地减少飞行时间。在本文中,我们用两个多媒体超分辨率实现测试了该方法的效率和有效性。我们还提供了使用各种图像处理指标比较两者的定量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative-Network Based Multimedia Super-Resolution for Uav Remote Sensing
Unmanned Aerial Vehicle (UAV) based aerial mapping has taken over the surveying industry thanks to low costs and ease of use. Although these UAVs have relatively high-resolution imaging systems, there exists a near exponential relationship between the ground sampling distance (GSD) and the number of images required - which is a function of flight altitude. To tackle this, we use a generative network based super-resolution approach to increase the GSD of images which effectively reduces flight time. In this paper we test the efficiency and efficacy of this approach using two multimedia super-resolution implementations. We also provide quantitative results comparing the two using various image processing metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信