消色差脸的自监督合作着色

Hitika Tiwari, K. Venkatesh
{"title":"消色差脸的自监督合作着色","authors":"Hitika Tiwari, K. Venkatesh","doi":"10.1109/ICIP46576.2022.9897765","DOIUrl":null,"url":null,"abstract":"Despite the recent progress in deep learning-based face image colorization techniques, there is still much room for improvement. One of the significant challenges is the bias toward specific skin color. Moreover, the conventional face colorization approaches aim to produce colored 2D face images, whereas the generation of colored 3D faces from monocular achromatic (gray-scale) images is beyond the scope of these methods despite having immense potential applications. To address these issues, we propose Self-Supervised COoperative COlorizaTion of Achromatic Faces (COCOTA) framework that contains chromatic and achromatic pipelines to jointly estimate the color and shape of 3D faces using monocular achromatic face images without inducing any specific color bias. On the challenging CelebA test dataset, COCOTA out-performs the current state-of-the-art method by a large margin (e.g., for 3D color-based error, a reduction from 5.12 ± 0.13 to 3.09 ± 0.08 leading to an improvement of 39.6%), demonstrating the effectiveness of the proposed method.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"515 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-Supervised Cooperative Colorization of Achromatic Faces\",\"authors\":\"Hitika Tiwari, K. Venkatesh\",\"doi\":\"10.1109/ICIP46576.2022.9897765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the recent progress in deep learning-based face image colorization techniques, there is still much room for improvement. One of the significant challenges is the bias toward specific skin color. Moreover, the conventional face colorization approaches aim to produce colored 2D face images, whereas the generation of colored 3D faces from monocular achromatic (gray-scale) images is beyond the scope of these methods despite having immense potential applications. To address these issues, we propose Self-Supervised COoperative COlorizaTion of Achromatic Faces (COCOTA) framework that contains chromatic and achromatic pipelines to jointly estimate the color and shape of 3D faces using monocular achromatic face images without inducing any specific color bias. On the challenging CelebA test dataset, COCOTA out-performs the current state-of-the-art method by a large margin (e.g., for 3D color-based error, a reduction from 5.12 ± 0.13 to 3.09 ± 0.08 leading to an improvement of 39.6%), demonstrating the effectiveness of the proposed method.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"515 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

尽管基于深度学习的人脸图像着色技术最近取得了进展,但仍有很大的改进空间。其中一个重大挑战是对特定肤色的偏见。此外,传统的人脸着色方法旨在生成彩色的二维人脸图像,而从单眼消色差(灰度)图像生成彩色的三维人脸,尽管具有巨大的潜在应用,但超出了这些方法的范围。为了解决这些问题,我们提出了COCOTA框架,该框架包含彩色和消色差管道,用于使用单眼消色差人脸图像联合估计3D人脸的颜色和形状,而不会产生任何特定的颜色偏差。在具有挑战性的CelebA测试数据集上,COCOTA的性能大大优于当前最先进的方法(例如,对于3D基于颜色的误差,从5.12±0.13降低到3.09±0.08,从而提高了39.6%),证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Supervised Cooperative Colorization of Achromatic Faces
Despite the recent progress in deep learning-based face image colorization techniques, there is still much room for improvement. One of the significant challenges is the bias toward specific skin color. Moreover, the conventional face colorization approaches aim to produce colored 2D face images, whereas the generation of colored 3D faces from monocular achromatic (gray-scale) images is beyond the scope of these methods despite having immense potential applications. To address these issues, we propose Self-Supervised COoperative COlorizaTion of Achromatic Faces (COCOTA) framework that contains chromatic and achromatic pipelines to jointly estimate the color and shape of 3D faces using monocular achromatic face images without inducing any specific color bias. On the challenging CelebA test dataset, COCOTA out-performs the current state-of-the-art method by a large margin (e.g., for 3D color-based error, a reduction from 5.12 ± 0.13 to 3.09 ± 0.08 leading to an improvement of 39.6%), demonstrating the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信