不同膜材料下暖通空调系统的空气能量回收

Rafat F. Al-Waked, M. Nasif
{"title":"不同膜材料下暖通空调系统的空气能量回收","authors":"Rafat F. Al-Waked, M. Nasif","doi":"10.13189/UJME.2019.070202","DOIUrl":null,"url":null,"abstract":"Membrane heat exchanger is one of the main components of green HVAC systems. Performance of a thin-membrane heat exchanger has been examined for different membrane materials. A computational fluid dynamics (CFD) approach was utilized to conduct the current study. The CFD model consisted of a single channel for hot stream and another channel for cold stream. Four membranes were investigated: 45 gsm and 60 gsm Kraft paper, modified cellulose acetate membrane and PVA/LiCl blend membrane. Obtained values of thermal effectiveness at typical HVAC system conditions showed that different membrane materials produced different thermal performance values. The amount of energy recovered from the modified cellulose acetate membrane heat exchanger was the highest. Finally, heat exchanger performance is found to be very sensitive to ambient air relative humidity variation.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Air to Air Energy Recovery from HVAC Systems under Different Membrane Materials\",\"authors\":\"Rafat F. Al-Waked, M. Nasif\",\"doi\":\"10.13189/UJME.2019.070202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane heat exchanger is one of the main components of green HVAC systems. Performance of a thin-membrane heat exchanger has been examined for different membrane materials. A computational fluid dynamics (CFD) approach was utilized to conduct the current study. The CFD model consisted of a single channel for hot stream and another channel for cold stream. Four membranes were investigated: 45 gsm and 60 gsm Kraft paper, modified cellulose acetate membrane and PVA/LiCl blend membrane. Obtained values of thermal effectiveness at typical HVAC system conditions showed that different membrane materials produced different thermal performance values. The amount of energy recovered from the modified cellulose acetate membrane heat exchanger was the highest. Finally, heat exchanger performance is found to be very sensitive to ambient air relative humidity variation.\",\"PeriodicalId\":275027,\"journal\":{\"name\":\"Universal Journal of Mechanical Engineering\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJME.2019.070202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJME.2019.070202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

膜式换热器是绿色暖通空调系统的主要组成部分之一。对不同膜材料的薄膜换热器进行了性能测试。采用计算流体动力学(CFD)方法进行本研究。计算流体动力学模型由一个单一的热流通道和另一个冷流通道组成。研究了四种膜:45 gsm和60 gsm牛皮纸、改性醋酸纤维素膜和PVA/LiCl共混膜。得到的典型暖通空调系统工况下的热效率值表明,不同的膜材料产生不同的热效率值。改性醋酸纤维素膜换热器的能量回收率最高。最后,换热器的性能对环境空气相对湿度的变化非常敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air to Air Energy Recovery from HVAC Systems under Different Membrane Materials
Membrane heat exchanger is one of the main components of green HVAC systems. Performance of a thin-membrane heat exchanger has been examined for different membrane materials. A computational fluid dynamics (CFD) approach was utilized to conduct the current study. The CFD model consisted of a single channel for hot stream and another channel for cold stream. Four membranes were investigated: 45 gsm and 60 gsm Kraft paper, modified cellulose acetate membrane and PVA/LiCl blend membrane. Obtained values of thermal effectiveness at typical HVAC system conditions showed that different membrane materials produced different thermal performance values. The amount of energy recovered from the modified cellulose acetate membrane heat exchanger was the highest. Finally, heat exchanger performance is found to be very sensitive to ambient air relative humidity variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信