完全图中随机谣言传播的严密分析

Benjamin Doerr, Marvin Künnemann
{"title":"完全图中随机谣言传播的严密分析","authors":"Benjamin Doerr, Marvin Künnemann","doi":"10.1137/1.9781611973204.8","DOIUrl":null,"url":null,"abstract":"We present a tight analysis of the basic randomized rumor spreading process in complete graphs introduced by Frieze and Grimmett (1985), where in each round of the process each node knowing the rumor gossips the rumor to a node chosen uniformly at random. The process starts with a single node knowing the rumor. \n \nWe show that the number Sn of rounds required to spread a rumor in a complete graph with n nodes is very closely described by log2 n plus (1/n) times the completion time of the coupon collector process. This in particular gives very precise bounds for the expected runtime of the process, namely ⌊log2 n⌋ + ln n − 1:116 ≤ E[Sn] ≤ ⌈log2 n⌉ + ln n + 2:765 + o(1).","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Tight Analysis of Randomized Rumor Spreading in Complete Graphs\",\"authors\":\"Benjamin Doerr, Marvin Künnemann\",\"doi\":\"10.1137/1.9781611973204.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a tight analysis of the basic randomized rumor spreading process in complete graphs introduced by Frieze and Grimmett (1985), where in each round of the process each node knowing the rumor gossips the rumor to a node chosen uniformly at random. The process starts with a single node knowing the rumor. \\n \\nWe show that the number Sn of rounds required to spread a rumor in a complete graph with n nodes is very closely described by log2 n plus (1/n) times the completion time of the coupon collector process. This in particular gives very precise bounds for the expected runtime of the process, namely ⌊log2 n⌋ + ln n − 1:116 ≤ E[Sn] ≤ ⌈log2 n⌉ + ln n + 2:765 + o(1).\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973204.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973204.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们对Frieze和Grimmett(1985)引入的完全图中的基本随机谣言传播过程进行了严密的分析,其中在每一轮过程中,每个知道谣言的节点将谣言传播给随机选择的一致节点。这个过程从一个知道谣言的节点开始。我们证明了在有n个节点的完全图中传播谣言所需的Sn轮数非常接近地描述为log2n加上(1/n)乘以优惠券收集过程的完成时间。尤其是这使非常精确的界限的预期运行时过程,即⌊log2 n⌋+ ln−1:116≤E (Sn)≤⌈log2 n⌉+ ln n + 2:765 + o(1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight Analysis of Randomized Rumor Spreading in Complete Graphs
We present a tight analysis of the basic randomized rumor spreading process in complete graphs introduced by Frieze and Grimmett (1985), where in each round of the process each node knowing the rumor gossips the rumor to a node chosen uniformly at random. The process starts with a single node knowing the rumor. We show that the number Sn of rounds required to spread a rumor in a complete graph with n nodes is very closely described by log2 n plus (1/n) times the completion time of the coupon collector process. This in particular gives very precise bounds for the expected runtime of the process, namely ⌊log2 n⌋ + ln n − 1:116 ≤ E[Sn] ≤ ⌈log2 n⌉ + ln n + 2:765 + o(1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信