用于混合现实应用的力反馈工具原型

Ian Gonsher, Zhenhong Lei
{"title":"用于混合现实应用的力反馈工具原型","authors":"Ian Gonsher, Zhenhong Lei","doi":"10.1109/ISMAR-Adjunct54149.2021.00123","DOIUrl":null,"url":null,"abstract":"This prototype demonstrates the viability of manipulating both physical and virtual objects with the same tool in order to maintain object permanence across both modes of interaction. Using oppositional force feedback, provided by a servo, and an augmented visual interface, provided by the user’s smartphone, this tool simulates the look and feel of a physical object within an augmented environment. Additionally, the tool is also able to manipulate physical objects that are not part of the augmented reality, such as a physical nut. By integrating both modes of interaction into the same tool, users can fluidly move between these different modes of interaction, manipulating both physical and virtual objects as the need arises. By overlaying this kind of visual and haptic augmentation onto a common tool such as a pair of pliers, we hope to further explore scenarios for collaborative telepresence in future work.","PeriodicalId":244088,"journal":{"name":"2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prototype of Force Feedback Tool for Mixed Reality Applications\",\"authors\":\"Ian Gonsher, Zhenhong Lei\",\"doi\":\"10.1109/ISMAR-Adjunct54149.2021.00123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This prototype demonstrates the viability of manipulating both physical and virtual objects with the same tool in order to maintain object permanence across both modes of interaction. Using oppositional force feedback, provided by a servo, and an augmented visual interface, provided by the user’s smartphone, this tool simulates the look and feel of a physical object within an augmented environment. Additionally, the tool is also able to manipulate physical objects that are not part of the augmented reality, such as a physical nut. By integrating both modes of interaction into the same tool, users can fluidly move between these different modes of interaction, manipulating both physical and virtual objects as the need arises. By overlaying this kind of visual and haptic augmentation onto a common tool such as a pair of pliers, we hope to further explore scenarios for collaborative telepresence in future work.\",\"PeriodicalId\":244088,\"journal\":{\"name\":\"2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR-Adjunct54149.2021.00123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR-Adjunct54149.2021.00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这个原型演示了使用相同的工具操作物理和虚拟对象的可行性,以便在两种交互模式中保持对象的持久性。利用伺服器提供的反作用力反馈和用户智能手机提供的增强视觉界面,该工具可以在增强环境中模拟物理对象的外观和感觉。此外,该工具还能够操作不属于增强现实的物理对象,例如物理螺母。通过将两种交互模式集成到同一工具中,用户可以在这些不同的交互模式之间流畅地移动,根据需要操作物理和虚拟对象。通过将这种视觉和触觉增强叠加到一个常见的工具上,比如一把钳子,我们希望在未来的工作中进一步探索协作远程呈现的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prototype of Force Feedback Tool for Mixed Reality Applications
This prototype demonstrates the viability of manipulating both physical and virtual objects with the same tool in order to maintain object permanence across both modes of interaction. Using oppositional force feedback, provided by a servo, and an augmented visual interface, provided by the user’s smartphone, this tool simulates the look and feel of a physical object within an augmented environment. Additionally, the tool is also able to manipulate physical objects that are not part of the augmented reality, such as a physical nut. By integrating both modes of interaction into the same tool, users can fluidly move between these different modes of interaction, manipulating both physical and virtual objects as the need arises. By overlaying this kind of visual and haptic augmentation onto a common tool such as a pair of pliers, we hope to further explore scenarios for collaborative telepresence in future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信