用于常见胸部疾病预测的YU-net肺段图像预处理方法

Haoxiong Yu, Xianbo Xu, Ziqi Zhao, Dancheng Li
{"title":"用于常见胸部疾病预测的YU-net肺段图像预处理方法","authors":"Haoxiong Yu, Xianbo Xu, Ziqi Zhao, Dancheng Li","doi":"10.1145/3409073.3409074","DOIUrl":null,"url":null,"abstract":"With the availability of large-scale data set of X-ray images and development of CNNs(Convolutional Neural Networks), using CNNs assist diagnose become more and more popular. But training CNNs using global image may be affected by the excessive irrelevant noisy areas. Due to the poor alignment of some Chest X-ray(CXR) images, the existence of irregular border hinders the neural network performance. In our work, we address the above problems by proposing a YU-net to segment lung fields on CXR images based on U-net, remove those areas of the images outside the lungs. In order to prove the effectiveness of YU-net, we trained, validated and tested the same 112,120 pictures of 30,536 patients on ResNet-50 and DenseNet-121 with both original Chest X-ray images and YU-net cleaned images. Compare the predicted result of DenseNet-121 and ResNet-50 with both YU-net processed images and original dataset, we found that use the YU-net cleaned images improve the performance of CNNs to recognize the multiple common thorax diseases.","PeriodicalId":229746,"journal":{"name":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","volume":"579 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"YU-net Lung Segment Image Preprocess Methods Used for Common Chest Diseases Prediction\",\"authors\":\"Haoxiong Yu, Xianbo Xu, Ziqi Zhao, Dancheng Li\",\"doi\":\"10.1145/3409073.3409074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the availability of large-scale data set of X-ray images and development of CNNs(Convolutional Neural Networks), using CNNs assist diagnose become more and more popular. But training CNNs using global image may be affected by the excessive irrelevant noisy areas. Due to the poor alignment of some Chest X-ray(CXR) images, the existence of irregular border hinders the neural network performance. In our work, we address the above problems by proposing a YU-net to segment lung fields on CXR images based on U-net, remove those areas of the images outside the lungs. In order to prove the effectiveness of YU-net, we trained, validated and tested the same 112,120 pictures of 30,536 patients on ResNet-50 and DenseNet-121 with both original Chest X-ray images and YU-net cleaned images. Compare the predicted result of DenseNet-121 and ResNet-50 with both YU-net processed images and original dataset, we found that use the YU-net cleaned images improve the performance of CNNs to recognize the multiple common thorax diseases.\",\"PeriodicalId\":229746,\"journal\":{\"name\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"volume\":\"579 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409073.3409074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409073.3409074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着大规模x射线图像数据集的可用性和卷积神经网络的发展,利用卷积神经网络辅助诊断越来越受欢迎。但是使用全局图像训练cnn可能会受到过多的不相关噪声区域的影响。由于部分胸部x线图像对正性较差,不规则边界的存在阻碍了神经网络的性能。在我们的工作中,我们提出了一个基于U-net的YU-net来分割CXR图像上的肺场,去除肺外的图像区域,从而解决了上述问题。为了证明YU-net的有效性,我们在ResNet-50和DenseNet-121上对30,536例患者的相同112,120张图片进行了训练,验证和测试,其中包括原始胸部x线图像和YU-net清洗后的图像。将DenseNet-121和ResNet-50与YU-net处理后的图像和原始数据集的预测结果进行比较,我们发现使用YU-net清洗后的图像可以提高cnn对多种常见胸腔疾病的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YU-net Lung Segment Image Preprocess Methods Used for Common Chest Diseases Prediction
With the availability of large-scale data set of X-ray images and development of CNNs(Convolutional Neural Networks), using CNNs assist diagnose become more and more popular. But training CNNs using global image may be affected by the excessive irrelevant noisy areas. Due to the poor alignment of some Chest X-ray(CXR) images, the existence of irregular border hinders the neural network performance. In our work, we address the above problems by proposing a YU-net to segment lung fields on CXR images based on U-net, remove those areas of the images outside the lungs. In order to prove the effectiveness of YU-net, we trained, validated and tested the same 112,120 pictures of 30,536 patients on ResNet-50 and DenseNet-121 with both original Chest X-ray images and YU-net cleaned images. Compare the predicted result of DenseNet-121 and ResNet-50 with both YU-net processed images and original dataset, we found that use the YU-net cleaned images improve the performance of CNNs to recognize the multiple common thorax diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信