{"title":"消息传递接口中的通用通信器","authors":"E. Demaine, Ian T Foster, C. Kesselman, M. Snir","doi":"10.1109/MPIDC.1996.534093","DOIUrl":null,"url":null,"abstract":"We propose extensions to the Message Passing Interface (MPI) that generalize the MPI communicator concept to allow multiple communication endpoints per process, dynamic creation of endpoints, and the transfer of endpoints between processes. The generalized communicator construct can be used to express a wide range of interesting communication structures, including collective communication operations involving multiple threads per process, communications between dynamically created threads, and object-oriented applications in which communications are directed to specific objects. Furthermore, this enriched functionality can be provided in a manner that preserves backward compatibility with MPI. We describe the proposed extensions, illustrate their use with examples, and discuss implementation issues.","PeriodicalId":432081,"journal":{"name":"Proceedings. Second MPI Developer's Conference","volume":"575 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"221","resultStr":"{\"title\":\"Generalized communicators in the Message Passing Interface\",\"authors\":\"E. Demaine, Ian T Foster, C. Kesselman, M. Snir\",\"doi\":\"10.1109/MPIDC.1996.534093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose extensions to the Message Passing Interface (MPI) that generalize the MPI communicator concept to allow multiple communication endpoints per process, dynamic creation of endpoints, and the transfer of endpoints between processes. The generalized communicator construct can be used to express a wide range of interesting communication structures, including collective communication operations involving multiple threads per process, communications between dynamically created threads, and object-oriented applications in which communications are directed to specific objects. Furthermore, this enriched functionality can be provided in a manner that preserves backward compatibility with MPI. We describe the proposed extensions, illustrate their use with examples, and discuss implementation issues.\",\"PeriodicalId\":432081,\"journal\":{\"name\":\"Proceedings. Second MPI Developer's Conference\",\"volume\":\"575 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"221\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Second MPI Developer's Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MPIDC.1996.534093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Second MPI Developer's Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MPIDC.1996.534093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized communicators in the Message Passing Interface
We propose extensions to the Message Passing Interface (MPI) that generalize the MPI communicator concept to allow multiple communication endpoints per process, dynamic creation of endpoints, and the transfer of endpoints between processes. The generalized communicator construct can be used to express a wide range of interesting communication structures, including collective communication operations involving multiple threads per process, communications between dynamically created threads, and object-oriented applications in which communications are directed to specific objects. Furthermore, this enriched functionality can be provided in a manner that preserves backward compatibility with MPI. We describe the proposed extensions, illustrate their use with examples, and discuss implementation issues.