图像恢复的边缘保持神经网络模型

P. Bao, Dianhui Wang
{"title":"图像恢复的边缘保持神经网络模型","authors":"P. Bao, Dianhui Wang","doi":"10.1109/ISSPA.1999.818134","DOIUrl":null,"url":null,"abstract":"This paper presents a combined approach for image restoration with edge-preserving regularization, subband coding, and artificial neural network. The multilayer perceptron model is employed to implement the restoration of images. The main merit of the neural network model is its massive parallelism with strong robustness for transmission noise and parameter or structure perturbation. The experiment has shown that the proposed approach outperforms SPIHT on both objective and subjective quality.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Edge-preserving neural network model for image restoration\",\"authors\":\"P. Bao, Dianhui Wang\",\"doi\":\"10.1109/ISSPA.1999.818134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a combined approach for image restoration with edge-preserving regularization, subband coding, and artificial neural network. The multilayer perceptron model is employed to implement the restoration of images. The main merit of the neural network model is its massive parallelism with strong robustness for transmission noise and parameter or structure perturbation. The experiment has shown that the proposed approach outperforms SPIHT on both objective and subjective quality.\",\"PeriodicalId\":302569,\"journal\":{\"name\":\"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.1999.818134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.818134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种边缘保持正则化、子带编码和人工神经网络相结合的图像恢复方法。采用多层感知器模型实现图像的恢复。该神经网络模型的主要优点是具有大量并行性,对传输噪声和参数或结构扰动具有较强的鲁棒性。实验表明,该方法在客观质量和主观质量上都优于SPIHT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-preserving neural network model for image restoration
This paper presents a combined approach for image restoration with edge-preserving regularization, subband coding, and artificial neural network. The multilayer perceptron model is employed to implement the restoration of images. The main merit of the neural network model is its massive parallelism with strong robustness for transmission noise and parameter or structure perturbation. The experiment has shown that the proposed approach outperforms SPIHT on both objective and subjective quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信