多项式集合中的算术

M. Hbaib, Y. Laabidi
{"title":"多项式集合中的算术","authors":"M. Hbaib, Y. Laabidi","doi":"10.12816/0006179","DOIUrl":null,"url":null,"abstract":"Let be a formal series with deg( ) 2, the aim of this paper is to prove that the maximal length of the nite -fractional parts in the -expansion of product of two beta-polynomials (a formal series that have not -fractional part), denoted L ( ) is nite when is Pisot or Salem series. Especially, we give its exact value if have one conjugate with absolute value smaller than 1 j j and if is a Pisot series verifying d +Ad 1 d 1 + +A0 = 0 such that deg( ) = m 2 and deg(A0) = s deg(Ai) 80 i d 2.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arithmetics in the set of beta-polynomials\",\"authors\":\"M. Hbaib, Y. Laabidi\",\"doi\":\"10.12816/0006179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a formal series with deg( ) 2, the aim of this paper is to prove that the maximal length of the nite -fractional parts in the -expansion of product of two beta-polynomials (a formal series that have not -fractional part), denoted L ( ) is nite when is Pisot or Salem series. Especially, we give its exact value if have one conjugate with absolute value smaller than 1 j j and if is a Pisot series verifying d +Ad 1 d 1 + +A0 = 0 such that deg( ) = m 2 and deg(A0) = s deg(Ai) 80 i d 2.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0006179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0006179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设一个deg() 2的形式级数,本文的目的是证明两个多项式乘积的展开(一个没有分数部分的形式级数),记为L()当为Pisot或Salem级数时,其n -分数部分的最大长度为n -分数部分。特别地,我们给出了它的精确值,如果有一个共轭的绝对值小于1j j,并且它是一个证明d +Ad 1 d1 + +A0 = 0的Pisot级数,使得deg() = m2, deg(A0) = s deg(Ai) 80i d2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetics in the set of beta-polynomials
Let be a formal series with deg( ) 2, the aim of this paper is to prove that the maximal length of the nite -fractional parts in the -expansion of product of two beta-polynomials (a formal series that have not -fractional part), denoted L ( ) is nite when is Pisot or Salem series. Especially, we give its exact value if have one conjugate with absolute value smaller than 1 j j and if is a Pisot series verifying d +Ad 1 d 1 + +A0 = 0 such that deg( ) = m 2 and deg(A0) = s deg(Ai) 80 i d 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信