柴油和汽油废气暴露的实时监测系统

B. Konnanath, Hyuntae Kim, A. Spanias, B. Bakkaloglu, Joseph Wang, A. Mulchandani, N. Myung
{"title":"柴油和汽油废气暴露的实时监测系统","authors":"B. Konnanath, Hyuntae Kim, A. Spanias, B. Bakkaloglu, Joseph Wang, A. Mulchandani, N. Myung","doi":"10.1109/ICDSP.2009.5201081","DOIUrl":null,"url":null,"abstract":"An integrated sensor array system is developed for detection and identification of environmental pollutants in diesel and gasoline exhaust fumes. The system includes a low noise floor analog front-end followed by a signal processing stage. Classification methods are used since the pollutants are often encountered as complex mixtures. In this paper, we present techniques to detect, digitize and classify analytes. This is done by extracting appropriate features from sensor data and using pattern recognition methods to identify the analytes. The detection analog front-end achieves 54dB SNR. The low-noise digitization technique is presented along with the feature extraction and classification algorithms. Comparative results are given for a series of pattern classifiers.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A real-time monitoring system for diesel and gasoline exhaust exposure\",\"authors\":\"B. Konnanath, Hyuntae Kim, A. Spanias, B. Bakkaloglu, Joseph Wang, A. Mulchandani, N. Myung\",\"doi\":\"10.1109/ICDSP.2009.5201081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integrated sensor array system is developed for detection and identification of environmental pollutants in diesel and gasoline exhaust fumes. The system includes a low noise floor analog front-end followed by a signal processing stage. Classification methods are used since the pollutants are often encountered as complex mixtures. In this paper, we present techniques to detect, digitize and classify analytes. This is done by extracting appropriate features from sensor data and using pattern recognition methods to identify the analytes. The detection analog front-end achieves 54dB SNR. The low-noise digitization technique is presented along with the feature extraction and classification algorithms. Comparative results are given for a series of pattern classifiers.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研制了一种集成传感器阵列系统,用于柴油和汽油废气中环境污染物的检测和识别。该系统包括一个低噪声底模拟前端和一个信号处理级。由于污染物通常是复杂的混合物,因此采用了分类方法。在本文中,我们提出了检测、数字化和分类分析的技术。这是通过从传感器数据中提取适当的特征并使用模式识别方法来识别分析物来完成的。检测模拟前端信噪比达到54dB。提出了低噪声数字化技术以及特征提取和分类算法。给出了一系列模式分类器的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A real-time monitoring system for diesel and gasoline exhaust exposure
An integrated sensor array system is developed for detection and identification of environmental pollutants in diesel and gasoline exhaust fumes. The system includes a low noise floor analog front-end followed by a signal processing stage. Classification methods are used since the pollutants are often encountered as complex mixtures. In this paper, we present techniques to detect, digitize and classify analytes. This is done by extracting appropriate features from sensor data and using pattern recognition methods to identify the analytes. The detection analog front-end achieves 54dB SNR. The low-noise digitization technique is presented along with the feature extraction and classification algorithms. Comparative results are given for a series of pattern classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信