用于面部表情识别的几何人脸成分特征提取

D. Liliana, M. R. Widyanto, T. Basaruddin
{"title":"用于面部表情识别的几何人脸成分特征提取","authors":"D. Liliana, M. R. Widyanto, T. Basaruddin","doi":"10.1109/ICACSIS.2018.8618248","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is an active research challenge in computer vision and artificial intelligence since facial expressions contribute non-verbal information in human communication. Capturing facial features become an important phase in facial recognition systems. Finding suitable feature descriptor is essential to determine the recognition results. We propose a novel geometric feature extraction method which apply simple calculation techniques for facial components to ensure the robustness for each variation of pose. Unlike any other features which require more efforts in a transformation process, the proposed method efficiently works directly on pixels basis. We apply our proposed features into a facial expression recognition system and validate emotion results on extended Cohn Kanade (CK+) emotion dataset and gives accuracy rate 93.67%.","PeriodicalId":207227,"journal":{"name":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"557 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Geometric Facial Components Feature Extraction for Facial Expression Recognition\",\"authors\":\"D. Liliana, M. R. Widyanto, T. Basaruddin\",\"doi\":\"10.1109/ICACSIS.2018.8618248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition is an active research challenge in computer vision and artificial intelligence since facial expressions contribute non-verbal information in human communication. Capturing facial features become an important phase in facial recognition systems. Finding suitable feature descriptor is essential to determine the recognition results. We propose a novel geometric feature extraction method which apply simple calculation techniques for facial components to ensure the robustness for each variation of pose. Unlike any other features which require more efforts in a transformation process, the proposed method efficiently works directly on pixels basis. We apply our proposed features into a facial expression recognition system and validate emotion results on extended Cohn Kanade (CK+) emotion dataset and gives accuracy rate 93.67%.\",\"PeriodicalId\":207227,\"journal\":{\"name\":\"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"557 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2018.8618248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2018.8618248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

面部表情识别是计算机视觉和人工智能领域的一个活跃的研究挑战,因为面部表情在人类交流中提供了非语言信息。人脸特征的捕捉是人脸识别系统的一个重要环节。寻找合适的特征描述符是确定识别结果的关键。我们提出了一种新的几何特征提取方法,该方法采用简单的面部成分计算技术来保证对每个姿态变化的鲁棒性。与其他特征在转换过程中需要更多的努力不同,本文提出的方法可以有效地直接在像素的基础上进行转换。我们将所提出的特征应用于面部表情识别系统,并在扩展的Cohn Kanade (CK+)情感数据集上验证了情感结果,准确率为93.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Facial Components Feature Extraction for Facial Expression Recognition
Facial expression recognition is an active research challenge in computer vision and artificial intelligence since facial expressions contribute non-verbal information in human communication. Capturing facial features become an important phase in facial recognition systems. Finding suitable feature descriptor is essential to determine the recognition results. We propose a novel geometric feature extraction method which apply simple calculation techniques for facial components to ensure the robustness for each variation of pose. Unlike any other features which require more efforts in a transformation process, the proposed method efficiently works directly on pixels basis. We apply our proposed features into a facial expression recognition system and validate emotion results on extended Cohn Kanade (CK+) emotion dataset and gives accuracy rate 93.67%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信