二叉决策树分类器实现逻辑回归作为特征选择和分类方法及其与最大似然的比较

H. R. Bittencourt, D. Moraes, V. Haertel
{"title":"二叉决策树分类器实现逻辑回归作为特征选择和分类方法及其与最大似然的比较","authors":"H. R. Bittencourt, D. Moraes, V. Haertel","doi":"10.1109/IGARSS.2007.4423159","DOIUrl":null,"url":null,"abstract":"This study deals with two different approaches to the classification of hyperspectral image data using a multiple stage classifier structured as a binary tree. One approach implements the Gaussian maximum likelihood (GML) decision function at each node of the tree and the second makes use of traditional binary logistic regression (LR). The results obtained by classification of AVIRIS images data are compared with single- stage classifiers.","PeriodicalId":284711,"journal":{"name":"2007 IEEE International Geoscience and Remote Sensing Symposium","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A binary decision tree classifier implementing logistic regression as a feature selection and classification method and its comparison with maximum likelihood\",\"authors\":\"H. R. Bittencourt, D. Moraes, V. Haertel\",\"doi\":\"10.1109/IGARSS.2007.4423159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study deals with two different approaches to the classification of hyperspectral image data using a multiple stage classifier structured as a binary tree. One approach implements the Gaussian maximum likelihood (GML) decision function at each node of the tree and the second makes use of traditional binary logistic regression (LR). The results obtained by classification of AVIRIS images data are compared with single- stage classifiers.\",\"PeriodicalId\":284711,\"journal\":{\"name\":\"2007 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2007.4423159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2007.4423159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本研究使用二叉树结构的多级分类器处理两种不同的高光谱图像数据分类方法。一种方法在树的每个节点上实现高斯最大似然(GML)决策函数,另一种方法使用传统的二元逻辑回归(LR)。对AVIRIS图像数据的分类结果与单阶段分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A binary decision tree classifier implementing logistic regression as a feature selection and classification method and its comparison with maximum likelihood
This study deals with two different approaches to the classification of hyperspectral image data using a multiple stage classifier structured as a binary tree. One approach implements the Gaussian maximum likelihood (GML) decision function at each node of the tree and the second makes use of traditional binary logistic regression (LR). The results obtained by classification of AVIRIS images data are compared with single- stage classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信