北极地区硫矿床探测Hyperion数据的机载SVM分析

L. Mandrake, K. Wagstaff, D. Gleeson, U. Rebbapragada, D. Tran, R. Castaño, Steve Ankuo Chien, R. Pappalardo
{"title":"北极地区硫矿床探测Hyperion数据的机载SVM分析","authors":"L. Mandrake, K. Wagstaff, D. Gleeson, U. Rebbapragada, D. Tran, R. Castaño, Steve Ankuo Chien, R. Pappalardo","doi":"10.1109/WHISPERS.2009.5288999","DOIUrl":null,"url":null,"abstract":"Onboard classification of remote sensing data can permit autonomous, intelligent scheduling decisions without ground interaction. In this study, we observe the sulfur-rich Borup-Fiord glacial springs in Canada with the Hyperion instrument aboard the EO-1 spacecraft. This system offers an analog to far more exotic locales such as Europa where remote sensing of biogenic indicators is of considerable interest. Previous work has been performed in the generation and execution of an onboard SVM (support vector machine) classifier to autonomously identify the presence of sulfur compounds associated with the activity of microbial life. However, those results were severely limited in the number of positive examples available to be labeled. In this paper we extend the sample size from 1 to 7 example scenes between 2006 and 2008, corresponding to a change from 18 to 235 positive labels. We also explore nonlinear SVM kernels as an extension of our onboard capability.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Onboard SVM analysis of Hyperion data to detect sulfur deposits in Arctic regions\",\"authors\":\"L. Mandrake, K. Wagstaff, D. Gleeson, U. Rebbapragada, D. Tran, R. Castaño, Steve Ankuo Chien, R. Pappalardo\",\"doi\":\"10.1109/WHISPERS.2009.5288999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Onboard classification of remote sensing data can permit autonomous, intelligent scheduling decisions without ground interaction. In this study, we observe the sulfur-rich Borup-Fiord glacial springs in Canada with the Hyperion instrument aboard the EO-1 spacecraft. This system offers an analog to far more exotic locales such as Europa where remote sensing of biogenic indicators is of considerable interest. Previous work has been performed in the generation and execution of an onboard SVM (support vector machine) classifier to autonomously identify the presence of sulfur compounds associated with the activity of microbial life. However, those results were severely limited in the number of positive examples available to be labeled. In this paper we extend the sample size from 1 to 7 example scenes between 2006 and 2008, corresponding to a change from 18 to 235 positive labels. We also explore nonlinear SVM kernels as an extension of our onboard capability.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5288999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5288999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

机载遥感数据分类可以在没有地面交互的情况下实现自主、智能的调度决策。在这项研究中,我们用EO-1航天器上的Hyperion仪器观测了加拿大富硫的borup - ford冰川泉。该系统提供了一种类似于欧罗巴等更为奇特的地方的模拟,在这些地方,对生物成因指标的遥感具有相当大的兴趣。先前的工作是在生成和执行机载SVM(支持向量机)分类器中进行的,以自主识别与微生物生命活动相关的硫化合物的存在。然而,这些结果严重限制了可用于标记的正示例的数量。在2006 - 2008年间,我们将样本数量从1个扩展到7个,对应于从18个到235个正标签的变化。我们还探索了非线性支持向量机核作为我们的机载能力的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Onboard SVM analysis of Hyperion data to detect sulfur deposits in Arctic regions
Onboard classification of remote sensing data can permit autonomous, intelligent scheduling decisions without ground interaction. In this study, we observe the sulfur-rich Borup-Fiord glacial springs in Canada with the Hyperion instrument aboard the EO-1 spacecraft. This system offers an analog to far more exotic locales such as Europa where remote sensing of biogenic indicators is of considerable interest. Previous work has been performed in the generation and execution of an onboard SVM (support vector machine) classifier to autonomously identify the presence of sulfur compounds associated with the activity of microbial life. However, those results were severely limited in the number of positive examples available to be labeled. In this paper we extend the sample size from 1 to 7 example scenes between 2006 and 2008, corresponding to a change from 18 to 235 positive labels. We also explore nonlinear SVM kernels as an extension of our onboard capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信