马尔可夫决策过程中可达性和平均收益的条件风险值

Jan Křetínský, Tobias Meggendorfer
{"title":"马尔可夫决策过程中可达性和平均收益的条件风险值","authors":"Jan Křetínský, Tobias Meggendorfer","doi":"10.1145/3209108.3209176","DOIUrl":null,"url":null,"abstract":"We present the conditional value-at-risk (CVaR) in the context of Markov chains and Markov decision processes with reachability and mean-payoff objectives. CVaR quantifies risk by means of the expectation of the worst p-quantile. As such it can be used to design risk-averse systems. We consider not only CVaR constraints, but also introduce their conjunction with expectation constraints and quantile constraints (value-at-risk, VaR). We derive lower and upper bounds on the computational complexity of the respective decision problems and characterize the structure of the strategies in terms of memory and randomization.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Conditional Value-at-Risk for Reachability and Mean Payoff in Markov Decision Processes\",\"authors\":\"Jan Křetínský, Tobias Meggendorfer\",\"doi\":\"10.1145/3209108.3209176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the conditional value-at-risk (CVaR) in the context of Markov chains and Markov decision processes with reachability and mean-payoff objectives. CVaR quantifies risk by means of the expectation of the worst p-quantile. As such it can be used to design risk-averse systems. We consider not only CVaR constraints, but also introduce their conjunction with expectation constraints and quantile constraints (value-at-risk, VaR). We derive lower and upper bounds on the computational complexity of the respective decision problems and characterize the structure of the strategies in terms of memory and randomization.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了马尔可夫链和马尔可夫决策过程中具有可达性和平均收益目标的条件风险值(CVaR)。CVaR通过对最差p分位数的期望来量化风险。因此,它可以用于设计规避风险的系统。我们不仅考虑CVaR约束,而且还引入了它们与期望约束和分位数约束(风险价值,VaR)的结合。我们推导了各自决策问题的计算复杂度的下界和上界,并从记忆和随机化的角度描述了策略的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional Value-at-Risk for Reachability and Mean Payoff in Markov Decision Processes
We present the conditional value-at-risk (CVaR) in the context of Markov chains and Markov decision processes with reachability and mean-payoff objectives. CVaR quantifies risk by means of the expectation of the worst p-quantile. As such it can be used to design risk-averse systems. We consider not only CVaR constraints, but also introduce their conjunction with expectation constraints and quantile constraints (value-at-risk, VaR). We derive lower and upper bounds on the computational complexity of the respective decision problems and characterize the structure of the strategies in terms of memory and randomization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信