针对SDN网络采用深度学习方法的入侵检测系统

Sarra Boukria, M. Guerroumi
{"title":"针对SDN网络采用深度学习方法的入侵检测系统","authors":"Sarra Boukria, M. Guerroumi","doi":"10.1109/ICTAACS48474.2019.8988138","DOIUrl":null,"url":null,"abstract":"Software Defined Network (SDN) is considered as the main component of the next generation network. Security, in this environment, has very challenges and risks. Attacking SDN controller or injecting false flow rules could affect the network and block the entire services. To enhance the SDN network security, we propose an anomaly-based intrusion detection system using deep learning approach. This solution aims to protect the communication channel between the SDN control layer and the SDN infrastructure layer against false data injection attack, and to detect any attempt of attack in SND southbound side. We analyze the flows that circulate in the SDN network, we use the logarithm function followed by the Min/Max scalar technique to normalize the flows features. For the flow classification, we exploit the Relu and Softmax functions. We test the proposed system with CICIDS2017 dataset on an experimental platform combining Mininet environment and ONOS controller. The evaluation results demonstrate the effectiveness and efficiency of the proposed security solution.","PeriodicalId":406766,"journal":{"name":"2019 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Intrusion detection system for SDN network using deep learning approach\",\"authors\":\"Sarra Boukria, M. Guerroumi\",\"doi\":\"10.1109/ICTAACS48474.2019.8988138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Defined Network (SDN) is considered as the main component of the next generation network. Security, in this environment, has very challenges and risks. Attacking SDN controller or injecting false flow rules could affect the network and block the entire services. To enhance the SDN network security, we propose an anomaly-based intrusion detection system using deep learning approach. This solution aims to protect the communication channel between the SDN control layer and the SDN infrastructure layer against false data injection attack, and to detect any attempt of attack in SND southbound side. We analyze the flows that circulate in the SDN network, we use the logarithm function followed by the Min/Max scalar technique to normalize the flows features. For the flow classification, we exploit the Relu and Softmax functions. We test the proposed system with CICIDS2017 dataset on an experimental platform combining Mininet environment and ONOS controller. The evaluation results demonstrate the effectiveness and efficiency of the proposed security solution.\",\"PeriodicalId\":406766,\"journal\":{\"name\":\"2019 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAACS48474.2019.8988138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAACS48474.2019.8988138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

软件定义网络(SDN)被认为是下一代网络的主要组成部分。在这种环境下,安全问题面临着很大的挑战和风险。攻击SDN控制器或注入虚假流量规则,可能会影响网络,导致整个业务阻塞。为了提高SDN网络的安全性,我们提出了一种基于异常的深度学习入侵检测系统。该方案旨在保护SDN控制层和SDN基础架构层之间的通信通道免受虚假数据注入攻击,并检测SND南向的任何攻击企图。我们分析了在SDN网络中循环的流量,我们使用对数函数和最小/最大标量技术来归一化流量特征。对于流分类,我们利用了Relu和Softmax函数。我们在Mininet环境和ONOS控制器相结合的实验平台上使用CICIDS2017数据集对所提出的系统进行了测试。评价结果证明了该安全方案的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion detection system for SDN network using deep learning approach
Software Defined Network (SDN) is considered as the main component of the next generation network. Security, in this environment, has very challenges and risks. Attacking SDN controller or injecting false flow rules could affect the network and block the entire services. To enhance the SDN network security, we propose an anomaly-based intrusion detection system using deep learning approach. This solution aims to protect the communication channel between the SDN control layer and the SDN infrastructure layer against false data injection attack, and to detect any attempt of attack in SND southbound side. We analyze the flows that circulate in the SDN network, we use the logarithm function followed by the Min/Max scalar technique to normalize the flows features. For the flow classification, we exploit the Relu and Softmax functions. We test the proposed system with CICIDS2017 dataset on an experimental platform combining Mininet environment and ONOS controller. The evaluation results demonstrate the effectiveness and efficiency of the proposed security solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信