基于多值连接权的递归神经网络动态系统辨识

A. Thammano, Phongthep Ruxpakawong
{"title":"基于多值连接权的递归神经网络动态系统辨识","authors":"A. Thammano, Phongthep Ruxpakawong","doi":"10.1109/FUZZY.2009.5277240","DOIUrl":null,"url":null,"abstract":"This paper introduces a new concept of the connection weight to the standard recurrent neural networks – Elman and Jordan networks. The architecture of the modified networks is the same as that of the original recurrent neural networks. However, in the modified networks the weight of each connection is multi-valued, depending on the value of the input data involved. The backpropagation learning algorithm is also modified to suit the proposed concept. The modified networks have been benchmarked against their original counterparts. The results on eleven benchmark problems are very encouraging.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic system identification using recurrent neural network with multi-valued connection weight\",\"authors\":\"A. Thammano, Phongthep Ruxpakawong\",\"doi\":\"10.1109/FUZZY.2009.5277240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new concept of the connection weight to the standard recurrent neural networks – Elman and Jordan networks. The architecture of the modified networks is the same as that of the original recurrent neural networks. However, in the modified networks the weight of each connection is multi-valued, depending on the value of the input data involved. The backpropagation learning algorithm is also modified to suit the proposed concept. The modified networks have been benchmarked against their original counterparts. The results on eleven benchmark problems are very encouraging.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文在标准递归神经网络Elman和Jordan网络中引入了连接权的新概念。改进后的网络结构与原有的递归神经网络结构相同。然而,在改进的网络中,每个连接的权重是多值的,这取决于所涉及的输入数据的值。反向传播学习算法也被修改以适应所提出的概念。修改后的网络与原来的网络进行了对比。在11个基准问题上的结果非常令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic system identification using recurrent neural network with multi-valued connection weight
This paper introduces a new concept of the connection weight to the standard recurrent neural networks – Elman and Jordan networks. The architecture of the modified networks is the same as that of the original recurrent neural networks. However, in the modified networks the weight of each connection is multi-valued, depending on the value of the input data involved. The backpropagation learning algorithm is also modified to suit the proposed concept. The modified networks have been benchmarked against their original counterparts. The results on eleven benchmark problems are very encouraging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信