探索VAE解码器增强语音重合成的潜力

Omead Pooladzandi, Xilin Li, Yang Gao, L. Theverapperuma
{"title":"探索VAE解码器增强语音重合成的潜力","authors":"Omead Pooladzandi, Xilin Li, Yang Gao, L. Theverapperuma","doi":"10.1109/SSP53291.2023.10207969","DOIUrl":null,"url":null,"abstract":"In this paper, we study different Variational Autoencoders (VAEs) decoder distributions in the audio setting to see how to improve magnitude and phase reconstruction on speech resynthesis tasks. We first provide background on the existing decoder distributions, such as Complex Gaussian and Laplace, which are equivalent to a Gamma decoder under certain conditions. We then consider separately modeling speech’s magnitude and phase information to see if we can improve the quality of either component, yielding an improvement in speech resynthesis. Extensive experiments show the Gamma decoder significantly improves magnitude reconstruction and that the von Mises decoder can weakly learn phase information. The novel Gamma decoder outperforms previous approaches, achieving a near-perfect PESQ of 4.4, representing a 42% improvement upon the state-of-the-art IS-VAE and an 86% decrease in the FAD metric. Our results demonstrate the effectiveness of the novel approach, improving the quality of speech resynthesis and compression capacity of VAEs.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Potential of VAE Decoders for Enhanced Speech Re-Synthesis\",\"authors\":\"Omead Pooladzandi, Xilin Li, Yang Gao, L. Theverapperuma\",\"doi\":\"10.1109/SSP53291.2023.10207969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study different Variational Autoencoders (VAEs) decoder distributions in the audio setting to see how to improve magnitude and phase reconstruction on speech resynthesis tasks. We first provide background on the existing decoder distributions, such as Complex Gaussian and Laplace, which are equivalent to a Gamma decoder under certain conditions. We then consider separately modeling speech’s magnitude and phase information to see if we can improve the quality of either component, yielding an improvement in speech resynthesis. Extensive experiments show the Gamma decoder significantly improves magnitude reconstruction and that the von Mises decoder can weakly learn phase information. The novel Gamma decoder outperforms previous approaches, achieving a near-perfect PESQ of 4.4, representing a 42% improvement upon the state-of-the-art IS-VAE and an 86% decrease in the FAD metric. Our results demonstrate the effectiveness of the novel approach, improving the quality of speech resynthesis and compression capacity of VAEs.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10207969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了不同的变分自编码器(VAEs)解码器在音频设置中的分布,以了解如何改善语音重合成任务中的幅度和相位重建。我们首先提供了现有解码器分布的背景,例如复高斯和拉普拉斯,它们在某些条件下相当于Gamma解码器。然后,我们考虑分别对语音的幅度和相位信息建模,看看我们是否可以提高这两个分量的质量,从而提高语音重合成的质量。大量实验表明,伽玛解码器显著改善了星等重建,而von Mises解码器可以弱学习相位信息。新型Gamma解码器优于以前的方法,达到了近乎完美的4.4 PESQ,比最先进的IS-VAE提高了42%,FAD指标降低了86%。实验结果证明了该方法的有效性,提高了语音重合成的质量和VAEs的压缩能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Potential of VAE Decoders for Enhanced Speech Re-Synthesis
In this paper, we study different Variational Autoencoders (VAEs) decoder distributions in the audio setting to see how to improve magnitude and phase reconstruction on speech resynthesis tasks. We first provide background on the existing decoder distributions, such as Complex Gaussian and Laplace, which are equivalent to a Gamma decoder under certain conditions. We then consider separately modeling speech’s magnitude and phase information to see if we can improve the quality of either component, yielding an improvement in speech resynthesis. Extensive experiments show the Gamma decoder significantly improves magnitude reconstruction and that the von Mises decoder can weakly learn phase information. The novel Gamma decoder outperforms previous approaches, achieving a near-perfect PESQ of 4.4, representing a 42% improvement upon the state-of-the-art IS-VAE and an 86% decrease in the FAD metric. Our results demonstrate the effectiveness of the novel approach, improving the quality of speech resynthesis and compression capacity of VAEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信