Shamar F. Christian, R. Fantino, Roderick Amir Gomez, Juan Carlos Balda
{"title":"基于电感封装的热管理可提高功率密度","authors":"Shamar F. Christian, R. Fantino, Roderick Amir Gomez, Juan Carlos Balda","doi":"10.1109/PEDG54999.2022.9923101","DOIUrl":null,"url":null,"abstract":"Inductors occupy significant volume in dc-dc converters where power density is an important figure of merit. This research work addresses an improved design of a power-dense nanocrystalline-based inductor employing potting materials with high thermal conductivity. Contrary to traditional inductor design methods which require larger volumes to accommodate for temperature rise limits, this work presents an analytical framework to decrease the inductor volume through encapsulation. Particularly, it analyzes the effectiveness of employing a hybrid potting material, through experimental investigation of various filler compositions as compared to the classical silicone gel-based materials. Experimental evidence verifying the theoretically designed method is presented in this work.","PeriodicalId":276307,"journal":{"name":"2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inductor Encapsulation-Based Thermal Management Enabling Increased Power Density\",\"authors\":\"Shamar F. Christian, R. Fantino, Roderick Amir Gomez, Juan Carlos Balda\",\"doi\":\"10.1109/PEDG54999.2022.9923101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inductors occupy significant volume in dc-dc converters where power density is an important figure of merit. This research work addresses an improved design of a power-dense nanocrystalline-based inductor employing potting materials with high thermal conductivity. Contrary to traditional inductor design methods which require larger volumes to accommodate for temperature rise limits, this work presents an analytical framework to decrease the inductor volume through encapsulation. Particularly, it analyzes the effectiveness of employing a hybrid potting material, through experimental investigation of various filler compositions as compared to the classical silicone gel-based materials. Experimental evidence verifying the theoretically designed method is presented in this work.\",\"PeriodicalId\":276307,\"journal\":{\"name\":\"2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDG54999.2022.9923101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG54999.2022.9923101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inductor Encapsulation-Based Thermal Management Enabling Increased Power Density
Inductors occupy significant volume in dc-dc converters where power density is an important figure of merit. This research work addresses an improved design of a power-dense nanocrystalline-based inductor employing potting materials with high thermal conductivity. Contrary to traditional inductor design methods which require larger volumes to accommodate for temperature rise limits, this work presents an analytical framework to decrease the inductor volume through encapsulation. Particularly, it analyzes the effectiveness of employing a hybrid potting material, through experimental investigation of various filler compositions as compared to the classical silicone gel-based materials. Experimental evidence verifying the theoretically designed method is presented in this work.