关于随机集的连续Choquet积分

P. Gader
{"title":"关于随机集的连续Choquet积分","authors":"P. Gader","doi":"10.1109/FUZZ.2003.1206615","DOIUrl":null,"url":null,"abstract":"An interpretation of continuous Choquet integrals with respect to random sets is given in the context of image filtering and shape detection. In this context, random sets represent random shapes defined on the plane. Random sets are characterized by their capacity functionals. Capacity functionals are fuzzy measures. Thus, input images can be integrated with respect to random sets. In this paper, input images are represented as fuzzy sets. The integration is interpreted in the context of mathematical morphology as the average a generalization morphological dilation or erosion. Specifically, the integrals represent the average probability that sets either intersect or are contained in the random sets, the average being over the alpha cuts of the input image. This interpretation has the potential for deriving new learning algorithms for using Choquet integrals in shape detection.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Continuous Choquet integrals with respect to random sets\",\"authors\":\"P. Gader\",\"doi\":\"10.1109/FUZZ.2003.1206615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interpretation of continuous Choquet integrals with respect to random sets is given in the context of image filtering and shape detection. In this context, random sets represent random shapes defined on the plane. Random sets are characterized by their capacity functionals. Capacity functionals are fuzzy measures. Thus, input images can be integrated with respect to random sets. In this paper, input images are represented as fuzzy sets. The integration is interpreted in the context of mathematical morphology as the average a generalization morphological dilation or erosion. Specifically, the integrals represent the average probability that sets either intersect or are contained in the random sets, the average being over the alpha cuts of the input image. This interpretation has the potential for deriving new learning algorithms for using Choquet integrals in shape detection.\",\"PeriodicalId\":212172,\"journal\":{\"name\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ.2003.1206615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1206615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在图像滤波和形状检测的背景下,给出了关于随机集的连续Choquet积分的解释。在这种情况下,随机集合表示平面上定义的随机形状。随机集的特征是它们的容量泛函。容量函数是模糊度量。因此,输入图像可以相对于随机集进行积分。在本文中,输入图像被表示为模糊集。在数学形态学的背景下,这种整合被解释为一般形态扩张或侵蚀的平均。具体来说,积分表示集合相交或包含在随机集合中的平均概率,平均值是输入图像的alpha切割。这种解释有可能推导出在形状检测中使用Choquet积分的新学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Choquet integrals with respect to random sets
An interpretation of continuous Choquet integrals with respect to random sets is given in the context of image filtering and shape detection. In this context, random sets represent random shapes defined on the plane. Random sets are characterized by their capacity functionals. Capacity functionals are fuzzy measures. Thus, input images can be integrated with respect to random sets. In this paper, input images are represented as fuzzy sets. The integration is interpreted in the context of mathematical morphology as the average a generalization morphological dilation or erosion. Specifically, the integrals represent the average probability that sets either intersect or are contained in the random sets, the average being over the alpha cuts of the input image. This interpretation has the potential for deriving new learning algorithms for using Choquet integrals in shape detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信