使用机器学习来衡量保守性

J. Bertomeu, E. Cheynel, Yifei Liao, Mario Milone
{"title":"使用机器学习来衡量保守性","authors":"J. Bertomeu, E. Cheynel, Yifei Liao, Mario Milone","doi":"10.2139/ssrn.3924961","DOIUrl":null,"url":null,"abstract":"Using a neural network, we develop novel measures of conservatism that fits non-linearities and interactions absent in prior literature. The machine-learning measures exhibit (i) fewer economically anomalous observations, (ii) economic associations consistent with existing studies, (iii) less unexplained year-over-year instability, and (iv) higher economic magnitudes consistent with reduced attenuation bias. The measure further reveals intuitive trends toward a secular decline in conservatism in the US. In simulations, linear models perform honorably even in the presence of a complex data-generating process but causal inference based on machine learning is the most robust to misspecification. The approach offers the promise of reducing noise in measurements and design more powerful tests to assess theories of conservatism.","PeriodicalId":408879,"journal":{"name":"Corporate Governance & Economics eJournal","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Machine Learning to Measure Conservatism\",\"authors\":\"J. Bertomeu, E. Cheynel, Yifei Liao, Mario Milone\",\"doi\":\"10.2139/ssrn.3924961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a neural network, we develop novel measures of conservatism that fits non-linearities and interactions absent in prior literature. The machine-learning measures exhibit (i) fewer economically anomalous observations, (ii) economic associations consistent with existing studies, (iii) less unexplained year-over-year instability, and (iv) higher economic magnitudes consistent with reduced attenuation bias. The measure further reveals intuitive trends toward a secular decline in conservatism in the US. In simulations, linear models perform honorably even in the presence of a complex data-generating process but causal inference based on machine learning is the most robust to misspecification. The approach offers the promise of reducing noise in measurements and design more powerful tests to assess theories of conservatism.\",\"PeriodicalId\":408879,\"journal\":{\"name\":\"Corporate Governance & Economics eJournal\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corporate Governance & Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3924961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corporate Governance & Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3924961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

使用神经网络,我们开发了新的保守性措施,以适应非线性和先前文献中缺乏的相互作用。机器学习测量表现出(i)较少的经济异常观测,(ii)与现有研究一致的经济关联,(iii)较少无法解释的年度不稳定性,以及(iv)与衰减偏差减少一致的更高的经济量级。该指标进一步揭示了美国保守主义长期衰落的直观趋势。在模拟中,线性模型即使在复杂的数据生成过程中也表现良好,但基于机器学习的因果推理对错误规范的鲁棒性最强。这种方法有望减少测量中的噪音,并设计出更强大的测试来评估保守主义理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Machine Learning to Measure Conservatism
Using a neural network, we develop novel measures of conservatism that fits non-linearities and interactions absent in prior literature. The machine-learning measures exhibit (i) fewer economically anomalous observations, (ii) economic associations consistent with existing studies, (iii) less unexplained year-over-year instability, and (iv) higher economic magnitudes consistent with reduced attenuation bias. The measure further reveals intuitive trends toward a secular decline in conservatism in the US. In simulations, linear models perform honorably even in the presence of a complex data-generating process but causal inference based on machine learning is the most robust to misspecification. The approach offers the promise of reducing noise in measurements and design more powerful tests to assess theories of conservatism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信