基于预测电流控制方法的不平衡单机dfig风系统控制

V. Phan, Hong‐Hee Lee
{"title":"基于预测电流控制方法的不平衡单机dfig风系统控制","authors":"V. Phan, Hong‐Hee Lee","doi":"10.1109/ECCE.2010.5617962","DOIUrl":null,"url":null,"abstract":"This paper presents an improved predictive current control (PCC) strategy for unbalanced stand-alone doubly-fed induction generator (DFIG) based wind power systems. The proposed control scheme predicts an appropriate average rotor voltage vector to eliminate the rotor current errors in the following switching period. The identified rotor voltage vector is then applied to the rotor-side converter (RSC) by using space-vector modulation (SVM) with constant switching frequency. To improve control performance, a compensation method for time delay is adopted. The whole control algorithm is performed in the RSC to achieve the desired control output, i.e., compensation for the stator voltage imbalance. The proposed PCC was tested by both simulations and experiments with 2.2kW DFIG feeding an unbalanced load to demonstrate the excellent steady-state performance as well as the extremely fast dynamic response of the proposed current controller.","PeriodicalId":161915,"journal":{"name":"2010 IEEE Energy Conversion Congress and Exposition","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Control of an unbalanced stand-alone DFIG-based wind system using predictive current control method\",\"authors\":\"V. Phan, Hong‐Hee Lee\",\"doi\":\"10.1109/ECCE.2010.5617962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved predictive current control (PCC) strategy for unbalanced stand-alone doubly-fed induction generator (DFIG) based wind power systems. The proposed control scheme predicts an appropriate average rotor voltage vector to eliminate the rotor current errors in the following switching period. The identified rotor voltage vector is then applied to the rotor-side converter (RSC) by using space-vector modulation (SVM) with constant switching frequency. To improve control performance, a compensation method for time delay is adopted. The whole control algorithm is performed in the RSC to achieve the desired control output, i.e., compensation for the stator voltage imbalance. The proposed PCC was tested by both simulations and experiments with 2.2kW DFIG feeding an unbalanced load to demonstrate the excellent steady-state performance as well as the extremely fast dynamic response of the proposed current controller.\",\"PeriodicalId\":161915,\"journal\":{\"name\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2010.5617962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Energy Conversion Congress and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2010.5617962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对不平衡单机双馈感应发电机(DFIG)风力发电系统,提出了一种改进的预测电流控制(PCC)策略。该控制方案预测了一个合适的转子平均电压矢量,以消除随后开关周期的转子电流误差。然后利用恒开关频率的空间矢量调制(SVM)将识别出的转子电压矢量应用于转子侧变换器(RSC)。为了提高控制性能,采用了时滞补偿方法。整个控制算法在RSC中执行,以达到期望的控制输出,即对定子电压不平衡的补偿。采用2.2kW DFIG馈送不平衡负载对PCC进行了仿真和实验验证,结果表明该电流控制器具有优异的稳态性能和极快的动态响应速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of an unbalanced stand-alone DFIG-based wind system using predictive current control method
This paper presents an improved predictive current control (PCC) strategy for unbalanced stand-alone doubly-fed induction generator (DFIG) based wind power systems. The proposed control scheme predicts an appropriate average rotor voltage vector to eliminate the rotor current errors in the following switching period. The identified rotor voltage vector is then applied to the rotor-side converter (RSC) by using space-vector modulation (SVM) with constant switching frequency. To improve control performance, a compensation method for time delay is adopted. The whole control algorithm is performed in the RSC to achieve the desired control output, i.e., compensation for the stator voltage imbalance. The proposed PCC was tested by both simulations and experiments with 2.2kW DFIG feeding an unbalanced load to demonstrate the excellent steady-state performance as well as the extremely fast dynamic response of the proposed current controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信