{"title":"多媒体推荐","authors":"Jialie Shen, Meng Wang, Shuicheng Yan, Peng Cui","doi":"10.1145/2393347.2396554","DOIUrl":null,"url":null,"abstract":"Due to the rapid growth of online multimedia information, the problem of information overload has become more and more serious in recent decades. To address this problem, various multimedia recommendation technologies have been developed by different research communities (e.g., multimedia systems, information retrieval, and machine learning). Meanwhile, many commercial web systems (e.g., Flick, Youtube, and Last.fm) have successfully applied recommendation techniques to provide users personalized multimedia content and services in a convenient and flexible way. This tutorial focuses on exploring the state-of-the-art in multimedia recommendation. We also discuss the experience gained from developing existing systems and review key challenges associated with large-scale multimedia recommendation.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multimedia recommendation\",\"authors\":\"Jialie Shen, Meng Wang, Shuicheng Yan, Peng Cui\",\"doi\":\"10.1145/2393347.2396554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the rapid growth of online multimedia information, the problem of information overload has become more and more serious in recent decades. To address this problem, various multimedia recommendation technologies have been developed by different research communities (e.g., multimedia systems, information retrieval, and machine learning). Meanwhile, many commercial web systems (e.g., Flick, Youtube, and Last.fm) have successfully applied recommendation techniques to provide users personalized multimedia content and services in a convenient and flexible way. This tutorial focuses on exploring the state-of-the-art in multimedia recommendation. We also discuss the experience gained from developing existing systems and review key challenges associated with large-scale multimedia recommendation.\",\"PeriodicalId\":212654,\"journal\":{\"name\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2393347.2396554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Due to the rapid growth of online multimedia information, the problem of information overload has become more and more serious in recent decades. To address this problem, various multimedia recommendation technologies have been developed by different research communities (e.g., multimedia systems, information retrieval, and machine learning). Meanwhile, many commercial web systems (e.g., Flick, Youtube, and Last.fm) have successfully applied recommendation techniques to provide users personalized multimedia content and services in a convenient and flexible way. This tutorial focuses on exploring the state-of-the-art in multimedia recommendation. We also discuss the experience gained from developing existing systems and review key challenges associated with large-scale multimedia recommendation.