一种用于耦合故障诊断的耦合因子隐马尔可夫模型

A. Kodali, K. Pattipati, Satnam Singh
{"title":"一种用于耦合故障诊断的耦合因子隐马尔可夫模型","authors":"A. Kodali, K. Pattipati, Satnam Singh","doi":"10.1109/AERO.2010.5446826","DOIUrl":null,"url":null,"abstract":"In this paper, we formulate a coupled factorial hidden Markov model-based framework to diagnose dependent faults occurring over time. In our previous research [1][2], the problem of diagnosing dynamic multiple faults (DMFD) is solved by assuming that the faults are independent. Here, we extend this formulation to determine the most likely evolution of dependent fault states (NP-hard problem), the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method along with the coupling assumptions (mixed memory Markov model) is proposed for solving the dynamic coupled fault diagnosis (DCFD) problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on small-scale and real-world systems and the simulation results show that this approach improves the correct isolation rate as compared to the formulation with independent fault states (DMFD).12","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A coupled factorial hidden Markov model (CFHMM) for diagnosing coupled faults\",\"authors\":\"A. Kodali, K. Pattipati, Satnam Singh\",\"doi\":\"10.1109/AERO.2010.5446826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we formulate a coupled factorial hidden Markov model-based framework to diagnose dependent faults occurring over time. In our previous research [1][2], the problem of diagnosing dynamic multiple faults (DMFD) is solved by assuming that the faults are independent. Here, we extend this formulation to determine the most likely evolution of dependent fault states (NP-hard problem), the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method along with the coupling assumptions (mixed memory Markov model) is proposed for solving the dynamic coupled fault diagnosis (DCFD) problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on small-scale and real-world systems and the simulation results show that this approach improves the correct isolation rate as compared to the formulation with independent fault states (DMFD).12\",\"PeriodicalId\":378029,\"journal\":{\"name\":\"2010 IEEE Aerospace Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2010.5446826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们建立了一个基于耦合因子隐马尔可夫模型的框架来诊断随时间发生的依赖故障。在我们之前的研究[1][2]中,通过假设故障是独立的来解决动态多故障(DMFD)的诊断问题。在这里,我们扩展这个公式来确定最可能的依赖故障状态的演变(np困难问题),一个最好地解释观察到的测试结果随着时间的推移。针对动态耦合故障诊断(DCFD)问题,提出了一种基于耦合假设(混合记忆马尔可夫模型)的迭代高斯-塞德尔坐标上升优化方法。在框架内还实现了一种软Viterbi算法,用于解码随时间变化的相关故障状态。我们在小规模和真实系统上演示了该算法,仿真结果表明,与具有独立故障状态(DMFD)的公式相比,该方法提高了正确的隔离率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A coupled factorial hidden Markov model (CFHMM) for diagnosing coupled faults
In this paper, we formulate a coupled factorial hidden Markov model-based framework to diagnose dependent faults occurring over time. In our previous research [1][2], the problem of diagnosing dynamic multiple faults (DMFD) is solved by assuming that the faults are independent. Here, we extend this formulation to determine the most likely evolution of dependent fault states (NP-hard problem), the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method along with the coupling assumptions (mixed memory Markov model) is proposed for solving the dynamic coupled fault diagnosis (DCFD) problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on small-scale and real-world systems and the simulation results show that this approach improves the correct isolation rate as compared to the formulation with independent fault states (DMFD).12
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信