基于用户的共享单车返回算法

Donghui Chen, Kazuya Sakai
{"title":"基于用户的共享单车返回算法","authors":"Donghui Chen, Kazuya Sakai","doi":"10.1145/3547276.3548443","DOIUrl":null,"url":null,"abstract":"Recently, the development of Internet connection, intelligence, and sharing in the bicycle industry has assisted bike sharing systems (BSS’s) in establishing a connection between public transport hubs. In this paper, we propose a novel user-based bike return (UBR) algorithm for docked BSS’s which leverages a dynamic price adjustment mechanism so that the system is able to rebalance the number of lent and returned bikes by itself at different docks nearby. The proposed scheme motivates users to return their bikes to other underflow docks close-by their target destinations through a cheaper plan to compensate the shortage in them. Consequentially, the bike sharing system is able to achieve dynamic self-balance and the operational cost of the entire system for operators is reduced while the satisfaction of users is significantly increased. The simulations are conducted using real traces, called Citi Bike, and the results demonstrate that the proposed UBR achieves its design goals.","PeriodicalId":255540,"journal":{"name":"Workshop Proceedings of the 51st International Conference on Parallel Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A User-Based Bike Return Algorithm for Docked Bike Sharing Systems\",\"authors\":\"Donghui Chen, Kazuya Sakai\",\"doi\":\"10.1145/3547276.3548443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the development of Internet connection, intelligence, and sharing in the bicycle industry has assisted bike sharing systems (BSS’s) in establishing a connection between public transport hubs. In this paper, we propose a novel user-based bike return (UBR) algorithm for docked BSS’s which leverages a dynamic price adjustment mechanism so that the system is able to rebalance the number of lent and returned bikes by itself at different docks nearby. The proposed scheme motivates users to return their bikes to other underflow docks close-by their target destinations through a cheaper plan to compensate the shortage in them. Consequentially, the bike sharing system is able to achieve dynamic self-balance and the operational cost of the entire system for operators is reduced while the satisfaction of users is significantly increased. The simulations are conducted using real traces, called Citi Bike, and the results demonstrate that the proposed UBR achieves its design goals.\",\"PeriodicalId\":255540,\"journal\":{\"name\":\"Workshop Proceedings of the 51st International Conference on Parallel Processing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop Proceedings of the 51st International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3547276.3548443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3547276.3548443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,自行车行业的互联网连接、智能和共享的发展帮助自行车共享系统(BSS)建立了公共交通枢纽之间的连接。在本文中,我们提出了一种新的基于用户的自行车归还算法,该算法利用动态价格调节机制,使系统能够在附近不同的码头自行平衡借出和归还的自行车数量。拟议中的计划鼓励用户将自行车归还到目标目的地附近的其他底流码头,通过一个更便宜的计划来弥补它们的短缺。从而使共享单车系统能够实现动态自平衡,降低了整个系统的运营成本,同时显著提高了用户的满意度。模拟使用真实的轨迹,称为Citi Bike,结果表明,所提出的UBR达到了其设计目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A User-Based Bike Return Algorithm for Docked Bike Sharing Systems
Recently, the development of Internet connection, intelligence, and sharing in the bicycle industry has assisted bike sharing systems (BSS’s) in establishing a connection between public transport hubs. In this paper, we propose a novel user-based bike return (UBR) algorithm for docked BSS’s which leverages a dynamic price adjustment mechanism so that the system is able to rebalance the number of lent and returned bikes by itself at different docks nearby. The proposed scheme motivates users to return their bikes to other underflow docks close-by their target destinations through a cheaper plan to compensate the shortage in them. Consequentially, the bike sharing system is able to achieve dynamic self-balance and the operational cost of the entire system for operators is reduced while the satisfaction of users is significantly increased. The simulations are conducted using real traces, called Citi Bike, and the results demonstrate that the proposed UBR achieves its design goals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信