根据ROC参数评估分类器性能的非参数方法的比较

W. Yousef, R. F. Wagner, M. Loew
{"title":"根据ROC参数评估分类器性能的非参数方法的比较","authors":"W. Yousef, R. F. Wagner, M. Loew","doi":"10.1109/AIPR.2004.18","DOIUrl":null,"url":null,"abstract":"The most common metric to assess a classifier's performance is the classification error rate, or the probability of misclassification (PMC). Receiver operating characteristic (ROC) analysis is a more general way to measure the performance. Some metrics that summarize the ROC curve are the two normal-deviate-axes parameters, i.e., a and b, and the area under the curve (AUC). The parameters \"a\" and \"b\" represent the intercept and slope, respectively, for the ROC curve if plotted on normal-deviate-axes scale. AUC represents the average of the classifier TPF over FPF resulting from considering different threshold values. In the present work, we used Monte-Carlo simulations to compare different bootstrap-based estimators, e.g., leave-one-out, .632, and .632+ bootstraps, to estimate the AUC. The results show the comparable performance of the different estimators in terms of RMS, while the .632+ is the least biased.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"449 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Comparison of non-parametric methods for assessing classifier performance in terms of ROC parameters\",\"authors\":\"W. Yousef, R. F. Wagner, M. Loew\",\"doi\":\"10.1109/AIPR.2004.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most common metric to assess a classifier's performance is the classification error rate, or the probability of misclassification (PMC). Receiver operating characteristic (ROC) analysis is a more general way to measure the performance. Some metrics that summarize the ROC curve are the two normal-deviate-axes parameters, i.e., a and b, and the area under the curve (AUC). The parameters \\\"a\\\" and \\\"b\\\" represent the intercept and slope, respectively, for the ROC curve if plotted on normal-deviate-axes scale. AUC represents the average of the classifier TPF over FPF resulting from considering different threshold values. In the present work, we used Monte-Carlo simulations to compare different bootstrap-based estimators, e.g., leave-one-out, .632, and .632+ bootstraps, to estimate the AUC. The results show the comparable performance of the different estimators in terms of RMS, while the .632+ is the least biased.\",\"PeriodicalId\":120814,\"journal\":{\"name\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"volume\":\"449 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2004.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

评估分类器性能的最常见指标是分类错误率,或错误分类的概率(PMC)。接受者工作特征(ROC)分析是衡量绩效的一种更通用的方法。总结ROC曲线的一些指标是两个正态偏离轴参数,即a和b,以及曲线下面积(AUC)。参数“a”和“b”分别表示ROC曲线的截距和斜率,如果在正态偏差轴尺度上绘制。AUC表示由于考虑不同阈值而产生的分类器TPF与FPF的平均值。在目前的工作中,我们使用蒙特卡罗模拟来比较不同的基于bootstrap的估计器,例如,left - 1 out, .632和.632+ bootstrap,以估计AUC。结果表明,不同的估计器在RMS方面具有可比性,而0.632 +是偏差最小的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of non-parametric methods for assessing classifier performance in terms of ROC parameters
The most common metric to assess a classifier's performance is the classification error rate, or the probability of misclassification (PMC). Receiver operating characteristic (ROC) analysis is a more general way to measure the performance. Some metrics that summarize the ROC curve are the two normal-deviate-axes parameters, i.e., a and b, and the area under the curve (AUC). The parameters "a" and "b" represent the intercept and slope, respectively, for the ROC curve if plotted on normal-deviate-axes scale. AUC represents the average of the classifier TPF over FPF resulting from considering different threshold values. In the present work, we used Monte-Carlo simulations to compare different bootstrap-based estimators, e.g., leave-one-out, .632, and .632+ bootstraps, to estimate the AUC. The results show the comparable performance of the different estimators in terms of RMS, while the .632+ is the least biased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信