以内存为中心的SPEC CPU2017套件特性与分析

Sarabjeet Singh, M. Awasthi
{"title":"以内存为中心的SPEC CPU2017套件特性与分析","authors":"Sarabjeet Singh, M. Awasthi","doi":"10.1145/3297663.3310311","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a comprehensive, memory-centric characterization of the SPEC CPU2017 benchmark suite, using a number of mechanisms including dynamic binary instrumentation, measurements on native hardware using hardware performance counters and operating system based tools. We present a number of results including working set sizes, memory capacity consumption and memory bandwidth utilization of various workloads. Our experiments reveal that, on the x86_64 ISA, SPEC CPU2017 workloads execute a significant number of memory related instructions, with approximately 50% of all dynamic instructions requiring memory accesses. We also show that there is a large variation in the memory footprint and bandwidth utilization profiles of the entire suite, with some benchmarks using as much as 16 GB of main memory and up to 2.3 GB/s of memory bandwidth. We perform instruction distribution analysis of the benchmark suite and find that the average instruction count for SPEC CPU2017 workloads is an order of magnitude higher than SPEC CPU2006 ones. In addition, we also find that FP benchmarks of the suite have higher compute requirements: on average, FP workloads execute three times the number of compute operations as compared to INT workloads.","PeriodicalId":273447,"journal":{"name":"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Memory Centric Characterization and Analysis of SPEC CPU2017 Suite\",\"authors\":\"Sarabjeet Singh, M. Awasthi\",\"doi\":\"10.1145/3297663.3310311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a comprehensive, memory-centric characterization of the SPEC CPU2017 benchmark suite, using a number of mechanisms including dynamic binary instrumentation, measurements on native hardware using hardware performance counters and operating system based tools. We present a number of results including working set sizes, memory capacity consumption and memory bandwidth utilization of various workloads. Our experiments reveal that, on the x86_64 ISA, SPEC CPU2017 workloads execute a significant number of memory related instructions, with approximately 50% of all dynamic instructions requiring memory accesses. We also show that there is a large variation in the memory footprint and bandwidth utilization profiles of the entire suite, with some benchmarks using as much as 16 GB of main memory and up to 2.3 GB/s of memory bandwidth. We perform instruction distribution analysis of the benchmark suite and find that the average instruction count for SPEC CPU2017 workloads is an order of magnitude higher than SPEC CPU2006 ones. In addition, we also find that FP benchmarks of the suite have higher compute requirements: on average, FP workloads execute three times the number of compute operations as compared to INT workloads.\",\"PeriodicalId\":273447,\"journal\":{\"name\":\"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3297663.3310311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3297663.3310311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在本文中,我们对SPEC CPU2017基准测试套件进行了全面的、以内存为中心的描述,使用了多种机制,包括动态二进制仪器、使用硬件性能计数器和基于操作系统的工具对本地硬件进行测量。我们给出了许多结果,包括各种工作负载的工作集大小、内存容量消耗和内存带宽利用率。我们的实验表明,在x86_64 ISA上,SPEC CPU2017工作负载执行了大量与内存相关的指令,大约50%的动态指令需要内存访问。我们还展示了整个套件的内存占用和带宽利用配置文件存在很大差异,一些基准测试使用多达16 GB的主内存和高达2.3 GB/s的内存带宽。我们对基准套件进行了指令分布分析,发现SPEC CPU2017工作负载的平均指令计数比SPEC CPU2006工作负载高一个数量级。此外,我们还发现套件的FP基准测试具有更高的计算需求:平均而言,与INT工作负载相比,FP工作负载执行的计算操作数量是其三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory Centric Characterization and Analysis of SPEC CPU2017 Suite
In this paper, we provide a comprehensive, memory-centric characterization of the SPEC CPU2017 benchmark suite, using a number of mechanisms including dynamic binary instrumentation, measurements on native hardware using hardware performance counters and operating system based tools. We present a number of results including working set sizes, memory capacity consumption and memory bandwidth utilization of various workloads. Our experiments reveal that, on the x86_64 ISA, SPEC CPU2017 workloads execute a significant number of memory related instructions, with approximately 50% of all dynamic instructions requiring memory accesses. We also show that there is a large variation in the memory footprint and bandwidth utilization profiles of the entire suite, with some benchmarks using as much as 16 GB of main memory and up to 2.3 GB/s of memory bandwidth. We perform instruction distribution analysis of the benchmark suite and find that the average instruction count for SPEC CPU2017 workloads is an order of magnitude higher than SPEC CPU2006 ones. In addition, we also find that FP benchmarks of the suite have higher compute requirements: on average, FP workloads execute three times the number of compute operations as compared to INT workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信