科学文献中内联数学表达式的检测

Kenichi Iwatsuki, T. Sagara, T. Hara, Akiko Aizawa
{"title":"科学文献中内联数学表达式的检测","authors":"Kenichi Iwatsuki, T. Sagara, T. Hara, Akiko Aizawa","doi":"10.1145/3103010.3121041","DOIUrl":null,"url":null,"abstract":"One of the issues in extracting natural language sentences from PDF documents is the identification of non-textual elements in a sentence. In this paper, we report our preliminary results on the identification of in-line mathematical expressions. We first construct a manually annotated corpus and apply conditional random field (CRF) for the math-zone identification using both layout features, such as font types, and linguistic features, such as context n-grams, obtained from PDF documents. Although our method is naive and uses a small amount of annotated training data, our method achieved an 88.95% F-measure compared with 22.81% for existing math OCR software.","PeriodicalId":200469,"journal":{"name":"Proceedings of the 2017 ACM Symposium on Document Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Detecting In-line Mathematical Expressions in Scientific Documents\",\"authors\":\"Kenichi Iwatsuki, T. Sagara, T. Hara, Akiko Aizawa\",\"doi\":\"10.1145/3103010.3121041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the issues in extracting natural language sentences from PDF documents is the identification of non-textual elements in a sentence. In this paper, we report our preliminary results on the identification of in-line mathematical expressions. We first construct a manually annotated corpus and apply conditional random field (CRF) for the math-zone identification using both layout features, such as font types, and linguistic features, such as context n-grams, obtained from PDF documents. Although our method is naive and uses a small amount of annotated training data, our method achieved an 88.95% F-measure compared with 22.81% for existing math OCR software.\",\"PeriodicalId\":200469,\"journal\":{\"name\":\"Proceedings of the 2017 ACM Symposium on Document Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3103010.3121041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3103010.3121041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

从PDF文档中提取自然语言句子的问题之一是句子中非文本元素的识别。在本文中,我们报告了我们的初步结果识别的在线数学表达式。我们首先构建一个手动注释的语料库,并使用从PDF文档获得的布局特征(如字体类型)和语言特征(如上下文n-grams)为数学区识别应用条件随机场(CRF)。虽然我们的方法很幼稚,使用了少量带注释的训练数据,但我们的方法达到了88.95%的F-measure,而现有数学OCR软件的F-measure为22.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting In-line Mathematical Expressions in Scientific Documents
One of the issues in extracting natural language sentences from PDF documents is the identification of non-textual elements in a sentence. In this paper, we report our preliminary results on the identification of in-line mathematical expressions. We first construct a manually annotated corpus and apply conditional random field (CRF) for the math-zone identification using both layout features, such as font types, and linguistic features, such as context n-grams, obtained from PDF documents. Although our method is naive and uses a small amount of annotated training data, our method achieved an 88.95% F-measure compared with 22.81% for existing math OCR software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信