核构型相互作用计算的稀疏矩阵-多向量乘法优化

H. Aktulga, A. Buluç, Samuel Williams, Chao Yang
{"title":"核构型相互作用计算的稀疏矩阵-多向量乘法优化","authors":"H. Aktulga, A. Buluç, Samuel Williams, Chao Yang","doi":"10.1109/IPDPS.2014.125","DOIUrl":null,"url":null,"abstract":"Obtaining highly accurate predictions on the properties of light atomic nuclei using the configuration interaction (CI) approach requires computing a few extremal Eigen pairs of the many-body nuclear Hamiltonian matrix. In the Many-body Fermion Dynamics for nuclei (MFDn) code, a block Eigen solver is used for this purpose. Due to the large size of the sparse matrices involved, a significant fraction of the time spent on the Eigen value computations is associated with the multiplication of a sparse matrix (and the transpose of that matrix) with multiple vectors (SpMM and SpMM_T). Existing implementations of SpMM and SpMM_T significantly underperform expectations. Thus, in this paper, we present and analyze optimized implementations of SpMM and SpMM_T. We base our implementation on the compressed sparse blocks (CSB) matrix format and target systems with multi-core architectures. We develop a performance model that allows us to understand and estimate the performance characteristics of our SpMM kernel implementations, and demonstrate the efficiency of our implementation on a series of real-world matrices extracted from MFDn. In particular, we obtain 3-4 speedup on the requisite operations over good implementations based on the commonly used compressed sparse row (CSR) matrix format. The improvements in the SpMM kernel suggest we may attain roughly a 40% speed up in the overall execution time of the block Eigen solver used in MFDn.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Optimizing Sparse Matrix-Multiple Vectors Multiplication for Nuclear Configuration Interaction Calculations\",\"authors\":\"H. Aktulga, A. Buluç, Samuel Williams, Chao Yang\",\"doi\":\"10.1109/IPDPS.2014.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obtaining highly accurate predictions on the properties of light atomic nuclei using the configuration interaction (CI) approach requires computing a few extremal Eigen pairs of the many-body nuclear Hamiltonian matrix. In the Many-body Fermion Dynamics for nuclei (MFDn) code, a block Eigen solver is used for this purpose. Due to the large size of the sparse matrices involved, a significant fraction of the time spent on the Eigen value computations is associated with the multiplication of a sparse matrix (and the transpose of that matrix) with multiple vectors (SpMM and SpMM_T). Existing implementations of SpMM and SpMM_T significantly underperform expectations. Thus, in this paper, we present and analyze optimized implementations of SpMM and SpMM_T. We base our implementation on the compressed sparse blocks (CSB) matrix format and target systems with multi-core architectures. We develop a performance model that allows us to understand and estimate the performance characteristics of our SpMM kernel implementations, and demonstrate the efficiency of our implementation on a series of real-world matrices extracted from MFDn. In particular, we obtain 3-4 speedup on the requisite operations over good implementations based on the commonly used compressed sparse row (CSR) matrix format. The improvements in the SpMM kernel suggest we may attain roughly a 40% speed up in the overall execution time of the block Eigen solver used in MFDn.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

使用组态相互作用(CI)方法获得对轻原子核性质的高精度预测需要计算多体核哈密顿矩阵的几个极值特征对。在核的多体费米子动力学(MFDn)代码中,块特征解算器用于此目的。由于所涉及的稀疏矩阵的大小很大,在特征值计算上花费的时间的很大一部分与稀疏矩阵(以及该矩阵的转置)与多个向量(SpMM和SpMM_T)的乘法有关。SpMM和SpMM_T的现有实现明显低于预期。因此,在本文中,我们提出并分析了SpMM和SpMM_T的优化实现。我们的实现基于压缩稀疏块(CSB)矩阵格式,目标系统具有多核架构。我们开发了一个性能模型,使我们能够理解和估计SpMM内核实现的性能特征,并在从MFDn提取的一系列实际矩阵上演示我们的实现的效率。特别是,与基于常用压缩稀疏行(CSR)矩阵格式的良好实现相比,我们在必要的操作上获得了3-4的加速。SpMM内核的改进表明,我们可以在MFDn中使用的块特征解算器的总体执行时间上获得大约40%的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Sparse Matrix-Multiple Vectors Multiplication for Nuclear Configuration Interaction Calculations
Obtaining highly accurate predictions on the properties of light atomic nuclei using the configuration interaction (CI) approach requires computing a few extremal Eigen pairs of the many-body nuclear Hamiltonian matrix. In the Many-body Fermion Dynamics for nuclei (MFDn) code, a block Eigen solver is used for this purpose. Due to the large size of the sparse matrices involved, a significant fraction of the time spent on the Eigen value computations is associated with the multiplication of a sparse matrix (and the transpose of that matrix) with multiple vectors (SpMM and SpMM_T). Existing implementations of SpMM and SpMM_T significantly underperform expectations. Thus, in this paper, we present and analyze optimized implementations of SpMM and SpMM_T. We base our implementation on the compressed sparse blocks (CSB) matrix format and target systems with multi-core architectures. We develop a performance model that allows us to understand and estimate the performance characteristics of our SpMM kernel implementations, and demonstrate the efficiency of our implementation on a series of real-world matrices extracted from MFDn. In particular, we obtain 3-4 speedup on the requisite operations over good implementations based on the commonly used compressed sparse row (CSR) matrix format. The improvements in the SpMM kernel suggest we may attain roughly a 40% speed up in the overall execution time of the block Eigen solver used in MFDn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信