扩散耦合系统中极限环振荡的同步

S. Y. Shafi, M. Arcak, M. Jovanović
{"title":"扩散耦合系统中极限环振荡的同步","authors":"S. Y. Shafi, M. Arcak, M. Jovanović","doi":"10.1109/ACC.2013.6580592","DOIUrl":null,"url":null,"abstract":"We present analytical and numerical conditions to verify whether limit cycle oscillations synchronize in diffusively coupled systems. We consider both compartmental ODE models, where each compartment represents a spatial domain of components interconnected through diffusion terms with like components in different compartments, and reaction-diffusion PDEs with Neumann boundary conditions. In both the discrete and continuous spatial domains, we assume the uncoupled dynamics are determined by a nonlinear system which admits an asymptotically stable limit cycle. The main contribution of the paper is a method to certify when the stable oscillatory trajectories of a diffusively coupled system are robust to diffusion, and to highlight cases where diffusion in fact leads to loss of spatial synchrony. We illustrate our results with a relaxation oscillator example.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Synchronization of limit cycle oscillations in diffusively-coupled systems\",\"authors\":\"S. Y. Shafi, M. Arcak, M. Jovanović\",\"doi\":\"10.1109/ACC.2013.6580592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present analytical and numerical conditions to verify whether limit cycle oscillations synchronize in diffusively coupled systems. We consider both compartmental ODE models, where each compartment represents a spatial domain of components interconnected through diffusion terms with like components in different compartments, and reaction-diffusion PDEs with Neumann boundary conditions. In both the discrete and continuous spatial domains, we assume the uncoupled dynamics are determined by a nonlinear system which admits an asymptotically stable limit cycle. The main contribution of the paper is a method to certify when the stable oscillatory trajectories of a diffusively coupled system are robust to diffusion, and to highlight cases where diffusion in fact leads to loss of spatial synchrony. We illustrate our results with a relaxation oscillator example.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6580592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给出了扩散耦合系统中极限环振荡是否同步的解析条件和数值条件。我们考虑了分区ODE模型和具有诺伊曼边界条件的反应-扩散偏微分方程。分区ODE模型中,每个分区代表一个空间域,该空间域通过扩散项与不同分区中的相似组件相互连接。在离散和连续的空间域中,我们假设解耦动力学是由一个具有渐近稳定极限环的非线性系统决定的。本文的主要贡献是证明扩散耦合系统的稳定振荡轨迹何时对扩散具有鲁棒性,并突出了扩散实际上导致空间同步丧失的情况。我们用一个松弛振荡器的例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization of limit cycle oscillations in diffusively-coupled systems
We present analytical and numerical conditions to verify whether limit cycle oscillations synchronize in diffusively coupled systems. We consider both compartmental ODE models, where each compartment represents a spatial domain of components interconnected through diffusion terms with like components in different compartments, and reaction-diffusion PDEs with Neumann boundary conditions. In both the discrete and continuous spatial domains, we assume the uncoupled dynamics are determined by a nonlinear system which admits an asymptotically stable limit cycle. The main contribution of the paper is a method to certify when the stable oscillatory trajectories of a diffusively coupled system are robust to diffusion, and to highlight cases where diffusion in fact leads to loss of spatial synchrony. We illustrate our results with a relaxation oscillator example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信