如何发现非法公司内幕交易?一种检测可疑内幕交易的数据挖掘方法

M. Esen, Emrah Bilgiç, Ulkem Basdas
{"title":"如何发现非法公司内幕交易?一种检测可疑内幕交易的数据挖掘方法","authors":"M. Esen, Emrah Bilgiç, Ulkem Basdas","doi":"10.1002/ISAF.1446","DOIUrl":null,"url":null,"abstract":"Only in the U.S. Stock Exchanges, the daily average trading volume is about 7 billion shares. This vast amount of trading shows the necessity of understanding the hidden insights in the data sets. In this study, a data mining technique, clustering based outlier analysis is applied to detect suspicious insider transactions. 1,244,815 transactions of 61,780 insiders are analysed, which are acquired from Thomson Financial, covering a period of January 2010–April 2017. In order to detect outliers, similar transactions are grouped into the same clusters by using a two‐step clustering based outlier detection technique, which is an integration of k‐means and hierarchical clustering. Then, it is shown that outlying transactions earn higher abnormal returns than non‐outlying transactions by using event study methodology.","PeriodicalId":153549,"journal":{"name":"Intell. Syst. Account. Finance Manag.","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"How to detect illegal corporate insider trading? A data mining approach for detecting suspicious insider transactions\",\"authors\":\"M. Esen, Emrah Bilgiç, Ulkem Basdas\",\"doi\":\"10.1002/ISAF.1446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Only in the U.S. Stock Exchanges, the daily average trading volume is about 7 billion shares. This vast amount of trading shows the necessity of understanding the hidden insights in the data sets. In this study, a data mining technique, clustering based outlier analysis is applied to detect suspicious insider transactions. 1,244,815 transactions of 61,780 insiders are analysed, which are acquired from Thomson Financial, covering a period of January 2010–April 2017. In order to detect outliers, similar transactions are grouped into the same clusters by using a two‐step clustering based outlier detection technique, which is an integration of k‐means and hierarchical clustering. Then, it is shown that outlying transactions earn higher abnormal returns than non‐outlying transactions by using event study methodology.\",\"PeriodicalId\":153549,\"journal\":{\"name\":\"Intell. Syst. Account. Finance Manag.\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intell. Syst. Account. Finance Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ISAF.1446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intell. Syst. Account. Finance Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ISAF.1446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

仅在美国证券交易所,日均成交量约为70亿股。如此大量的交易显示了理解数据集中隐藏的洞察力的必要性。在本研究中,采用数据挖掘技术,基于聚类的离群值分析来检测可疑的内幕交易。分析了61780名内部人士的1244815笔交易,这些交易是从汤姆森金融收购的,涵盖2010年1月至2017年4月。为了检测异常值,通过使用基于k均值和分层聚类的两步聚类异常检测技术,将相似的事务分组到相同的聚类中。然后,运用事件研究方法证明了外围交易比非外围交易获得更高的异常收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to detect illegal corporate insider trading? A data mining approach for detecting suspicious insider transactions
Only in the U.S. Stock Exchanges, the daily average trading volume is about 7 billion shares. This vast amount of trading shows the necessity of understanding the hidden insights in the data sets. In this study, a data mining technique, clustering based outlier analysis is applied to detect suspicious insider transactions. 1,244,815 transactions of 61,780 insiders are analysed, which are acquired from Thomson Financial, covering a period of January 2010–April 2017. In order to detect outliers, similar transactions are grouped into the same clusters by using a two‐step clustering based outlier detection technique, which is an integration of k‐means and hierarchical clustering. Then, it is shown that outlying transactions earn higher abnormal returns than non‐outlying transactions by using event study methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信