实约化群的特殊无有效Arthur包

J. Fernandes
{"title":"实约化群的特殊无有效Arthur包","authors":"J. Fernandes","doi":"10.13016/QMF9-NTWP","DOIUrl":null,"url":null,"abstract":"We compute special unipotent Arthur packets for real reductive groups in many cases. We list the cases that lead to incomplete answers, and in those cases, provide a suitable set of representations that could lead to a complete description of the special Arthur packet. In the process of achieving this goal we classify theta forms of a given even complex nilpotent orbit, and find methods to compute the associated varieties of irreducible group representations.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special Unipotent Arthur Packets for Real Reductive Groups\",\"authors\":\"J. Fernandes\",\"doi\":\"10.13016/QMF9-NTWP\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute special unipotent Arthur packets for real reductive groups in many cases. We list the cases that lead to incomplete answers, and in those cases, provide a suitable set of representations that could lead to a complete description of the special Arthur packet. In the process of achieving this goal we classify theta forms of a given even complex nilpotent orbit, and find methods to compute the associated varieties of irreducible group representations.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13016/QMF9-NTWP\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13016/QMF9-NTWP","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多情况下,我们计算了实约化群的特殊单有效Arthur包。我们列出了导致不完整答案的情况,并且在这些情况下,提供了一组合适的表示,可以导致对特殊Arthur数据包的完整描述。在实现这一目标的过程中,我们对给定的偶复幂零轨道的θ形式进行了分类,并找到了计算不可约群表示的相关变体的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special Unipotent Arthur Packets for Real Reductive Groups
We compute special unipotent Arthur packets for real reductive groups in many cases. We list the cases that lead to incomplete answers, and in those cases, provide a suitable set of representations that could lead to a complete description of the special Arthur packet. In the process of achieving this goal we classify theta forms of a given even complex nilpotent orbit, and find methods to compute the associated varieties of irreducible group representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信