基于韵律词的汉语连续语音声调评价

Yi-Qian Pan, Si Wei, Ren-Hua Wang
{"title":"基于韵律词的汉语连续语音声调评价","authors":"Yi-Qian Pan, Si Wei, Ren-Hua Wang","doi":"10.1109/CHINSL.2008.ECP.77","DOIUrl":null,"url":null,"abstract":"Tonal evaluation of Chinese continuous speech plays an important role in Mandarin Chinese pronunciation test. In this paper, we introduce the Multi- Space Distribution Hidden Markov Model based on prosodic word. The results show that the performance of tonal syllable error rate can be reduced. For the non-standard Chinese Mandarin speech, the correlation between computer score and expert score was improved above 3.0% absolutely, compared with the baseline system without tonal pronunciation test.","PeriodicalId":291958,"journal":{"name":"2008 6th International Symposium on Chinese Spoken Language Processing","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tone Evaluation of Chinese Continuous Speech Based on Prosodic Words\",\"authors\":\"Yi-Qian Pan, Si Wei, Ren-Hua Wang\",\"doi\":\"10.1109/CHINSL.2008.ECP.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tonal evaluation of Chinese continuous speech plays an important role in Mandarin Chinese pronunciation test. In this paper, we introduce the Multi- Space Distribution Hidden Markov Model based on prosodic word. The results show that the performance of tonal syllable error rate can be reduced. For the non-standard Chinese Mandarin speech, the correlation between computer score and expert score was improved above 3.0% absolutely, compared with the baseline system without tonal pronunciation test.\",\"PeriodicalId\":291958,\"journal\":{\"name\":\"2008 6th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHINSL.2008.ECP.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2008.ECP.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

汉语连续语音的声调评价在普通话语音测试中起着重要的作用。本文介绍了基于韵律词的多空间分布隐马尔可夫模型。结果表明,该方法可以降低声调音节的错误率。对于非标准汉语普通话语音,与不进行声调语音测试的基线系统相比,计算机得分与专家得分的相关性绝对提高了3.0%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tone Evaluation of Chinese Continuous Speech Based on Prosodic Words
Tonal evaluation of Chinese continuous speech plays an important role in Mandarin Chinese pronunciation test. In this paper, we introduce the Multi- Space Distribution Hidden Markov Model based on prosodic word. The results show that the performance of tonal syllable error rate can be reduced. For the non-standard Chinese Mandarin speech, the correlation between computer score and expert score was improved above 3.0% absolutely, compared with the baseline system without tonal pronunciation test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信