深度融合视频超分辨率网络

Jingmin Yang, Zhensen Chen, Li Xu
{"title":"深度融合视频超分辨率网络","authors":"Jingmin Yang, Zhensen Chen, Li Xu","doi":"10.1109/PIC53636.2021.9687037","DOIUrl":null,"url":null,"abstract":"The video super-resolution (VSR) task refers to the use of corresponding low-resolution (LR) frames and multiple neighboring frames to generate high-resolution (HR) frames. An important step in VSR is to fuse the features of the reference frame with the features of the supporting frame. The existing VSR method does not make full use of the information provided by the distant neighboring frame, and usually fuses in a one-stage manner. In this paper, we propose a deep fusion video super-resolution network based on temporal grouping. We divide the input sequence into groups according to different frame rates to provide more accurate supplementary information, and the method aggregates temporal and spatial information at different stages of fusion.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deeply Feature Fused Video Super-resolution Network\",\"authors\":\"Jingmin Yang, Zhensen Chen, Li Xu\",\"doi\":\"10.1109/PIC53636.2021.9687037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The video super-resolution (VSR) task refers to the use of corresponding low-resolution (LR) frames and multiple neighboring frames to generate high-resolution (HR) frames. An important step in VSR is to fuse the features of the reference frame with the features of the supporting frame. The existing VSR method does not make full use of the information provided by the distant neighboring frame, and usually fuses in a one-stage manner. In this paper, we propose a deep fusion video super-resolution network based on temporal grouping. We divide the input sequence into groups according to different frame rates to provide more accurate supplementary information, and the method aggregates temporal and spatial information at different stages of fusion.\",\"PeriodicalId\":297239,\"journal\":{\"name\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC53636.2021.9687037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频超分辨率任务是指利用相应的低分辨率(LR)帧和多个相邻帧生成高分辨率(HR)帧。VSR的一个重要步骤是融合参考框架和支撑框架的特征。现有的VSR方法没有充分利用远处相邻帧提供的信息,通常采用一级融合的方式。本文提出了一种基于时间分组的深度融合视频超分辨网络。为了提供更准确的补充信息,该方法根据不同的帧率对输入序列进行分组,并在融合的不同阶段对时空信息进行聚合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deeply Feature Fused Video Super-resolution Network
The video super-resolution (VSR) task refers to the use of corresponding low-resolution (LR) frames and multiple neighboring frames to generate high-resolution (HR) frames. An important step in VSR is to fuse the features of the reference frame with the features of the supporting frame. The existing VSR method does not make full use of the information provided by the distant neighboring frame, and usually fuses in a one-stage manner. In this paper, we propose a deep fusion video super-resolution network based on temporal grouping. We divide the input sequence into groups according to different frame rates to provide more accurate supplementary information, and the method aggregates temporal and spatial information at different stages of fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信