钢筋混凝土剪力墙线性和非线性动力分析的地震反应

Do Yeon Kim
{"title":"钢筋混凝土剪力墙线性和非线性动力分析的地震反应","authors":"Do Yeon Kim","doi":"10.1115/PVP2018-84851","DOIUrl":null,"url":null,"abstract":"Seismic responses from linear and nonlinear dynamic analyses of reinforced concrete (RC) shear walls are compared to see how the damping ratio and cracking behavior affect the dynamic response of the RC structures used in the nuclear power plant. The nonlinear dynamic analyses are conducted based on the numerical model which is developed to simulate the nonlinear hysteretic behavior of RC structures subjected to in-plane shear. Through comparison of the obtained numerical results with experimental data such as load-displacement relationships and response time-histories, the developed numerical model is validated. The acceleration response spectra from the nonlinear dynamic analysis results of selected RC shear wall and those from linear dynamic analysis with combinations of the damping ratio and concrete stiffness considerations according to the level of earthquake loads and the resultant stresses are addressed.","PeriodicalId":180537,"journal":{"name":"Volume 8: Seismic Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Responses From Linear and Nonlinear Dynamic Analyis of RC Shear Walls\",\"authors\":\"Do Yeon Kim\",\"doi\":\"10.1115/PVP2018-84851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic responses from linear and nonlinear dynamic analyses of reinforced concrete (RC) shear walls are compared to see how the damping ratio and cracking behavior affect the dynamic response of the RC structures used in the nuclear power plant. The nonlinear dynamic analyses are conducted based on the numerical model which is developed to simulate the nonlinear hysteretic behavior of RC structures subjected to in-plane shear. Through comparison of the obtained numerical results with experimental data such as load-displacement relationships and response time-histories, the developed numerical model is validated. The acceleration response spectra from the nonlinear dynamic analysis results of selected RC shear wall and those from linear dynamic analysis with combinations of the damping ratio and concrete stiffness considerations according to the level of earthquake loads and the resultant stresses are addressed.\",\"PeriodicalId\":180537,\"journal\":{\"name\":\"Volume 8: Seismic Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Seismic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Seismic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对钢筋混凝土(RC)剪力墙线性和非线性动力分析的地震反应进行比较,了解阻尼比和开裂行为如何影响核电厂中使用的RC结构的动力反应。建立了钢筋混凝土结构在面内剪切作用下的非线性滞回特性数值模拟模型,并进行了非线性动力分析。通过将所得数值结果与荷载-位移关系、响应时程等试验数据进行比较,验证了所建立的数值模型的有效性。讨论了所选剪力墙非线性动力分析结果的加速度响应谱,以及根据地震荷载水平和合成应力考虑阻尼比和混凝土刚度的线性动力分析结果的加速度响应谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic Responses From Linear and Nonlinear Dynamic Analyis of RC Shear Walls
Seismic responses from linear and nonlinear dynamic analyses of reinforced concrete (RC) shear walls are compared to see how the damping ratio and cracking behavior affect the dynamic response of the RC structures used in the nuclear power plant. The nonlinear dynamic analyses are conducted based on the numerical model which is developed to simulate the nonlinear hysteretic behavior of RC structures subjected to in-plane shear. Through comparison of the obtained numerical results with experimental data such as load-displacement relationships and response time-histories, the developed numerical model is validated. The acceleration response spectra from the nonlinear dynamic analysis results of selected RC shear wall and those from linear dynamic analysis with combinations of the damping ratio and concrete stiffness considerations according to the level of earthquake loads and the resultant stresses are addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信