传感器云基础设施中移动资源时空现象预测

Sunanda Bose, Sujay Paul, N. Mukherjee
{"title":"传感器云基础设施中移动资源时空现象预测","authors":"Sunanda Bose, Sujay Paul, N. Mukherjee","doi":"10.1145/3446936","DOIUrl":null,"url":null,"abstract":"Integration of sensor and cloud technologies enable distributed sensing and data collection. We consider a scenario when sensing requests are originated from sensor aware applications that are hosted inside sensor-cloud infrastructures. These requests need to be satisfied using geographically distributed sensors. However, if the sensing resources are mobile, then sensing territory is not limited to a fixed region, rather spatially diverse. In this work, we present a generic scheme for integrating spatio-temporal information of mobile sensors for Internet of Things– (IoT) based environment monitoring system. A set of algorithms are proposed in this work to model spatial and temporal features of mobile resources and exploit resource mobility. We also propose probabilistic models to measure feasibility of a resource to sense a specific spatio-temporal phenomenon. We rank the resources based on their feasibility of satisfying the sensing requests and later use the information for efficient resource allocation and scheduling.","PeriodicalId":202328,"journal":{"name":"ACM Trans. Spatial Algorithms Syst.","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Spatio-Temporal Phenomena of Mobile Resources in Sensor Cloud Infrastructure\",\"authors\":\"Sunanda Bose, Sujay Paul, N. Mukherjee\",\"doi\":\"10.1145/3446936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integration of sensor and cloud technologies enable distributed sensing and data collection. We consider a scenario when sensing requests are originated from sensor aware applications that are hosted inside sensor-cloud infrastructures. These requests need to be satisfied using geographically distributed sensors. However, if the sensing resources are mobile, then sensing territory is not limited to a fixed region, rather spatially diverse. In this work, we present a generic scheme for integrating spatio-temporal information of mobile sensors for Internet of Things– (IoT) based environment monitoring system. A set of algorithms are proposed in this work to model spatial and temporal features of mobile resources and exploit resource mobility. We also propose probabilistic models to measure feasibility of a resource to sense a specific spatio-temporal phenomenon. We rank the resources based on their feasibility of satisfying the sensing requests and later use the information for efficient resource allocation and scheduling.\",\"PeriodicalId\":202328,\"journal\":{\"name\":\"ACM Trans. Spatial Algorithms Syst.\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Spatial Algorithms Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Spatial Algorithms Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传感器和云技术的集成使分布式传感和数据收集成为可能。我们考虑这样一种场景,即感知请求来自托管在传感器云基础设施中的传感器感知应用程序。这些请求需要使用地理上分布的传感器来满足。然而,如果传感资源是移动的,那么传感领域就不局限于一个固定的区域,而是具有空间多样性。在这项工作中,我们提出了一种基于物联网(IoT)环境监测系统的移动传感器时空信息集成的通用方案。本文提出了一套模拟移动资源时空特征和开发资源流动性的算法。我们还提出了概率模型来衡量资源感知特定时空现象的可行性。我们根据满足感知请求的可行性对资源进行排序,然后利用这些信息进行有效的资源分配和调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Spatio-Temporal Phenomena of Mobile Resources in Sensor Cloud Infrastructure
Integration of sensor and cloud technologies enable distributed sensing and data collection. We consider a scenario when sensing requests are originated from sensor aware applications that are hosted inside sensor-cloud infrastructures. These requests need to be satisfied using geographically distributed sensors. However, if the sensing resources are mobile, then sensing territory is not limited to a fixed region, rather spatially diverse. In this work, we present a generic scheme for integrating spatio-temporal information of mobile sensors for Internet of Things– (IoT) based environment monitoring system. A set of algorithms are proposed in this work to model spatial and temporal features of mobile resources and exploit resource mobility. We also propose probabilistic models to measure feasibility of a resource to sense a specific spatio-temporal phenomenon. We rank the resources based on their feasibility of satisfying the sensing requests and later use the information for efficient resource allocation and scheduling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信