通过多次x光对子弹进行识别和重建

Simon J. Perkins, P. Marais
{"title":"通过多次x光对子弹进行识别和重建","authors":"Simon J. Perkins, P. Marais","doi":"10.1145/1108590.1108610","DOIUrl":null,"url":null,"abstract":"We present a framework for the rapid detection and 3D localisation of bullets (or other compact shapes) from a sparse set of cross-sectional patient x-rays. The intention of this work is to assess a software architecture for an application specific alternative to conventional CT which can be leveraged in poor communities using less expensive technology. Of necessity such a system will not provide the diagnostic sophistication of full CT, but in many cases this added complexity may not be required. While a pair of x-rays can provide some 3D positional information to a clinician, such an assessment is qualitative and occluding tissue/bone may lead to an incorrect assessment of the internal location of the bullet.Our system uses a combination of model-based segmentation and CT-like back-projection to arrive at an approximate volume representation of the embedded shape, based on a sequence of x-rays which encompasses the affected area. Depending on the nature of the injury, such a 3D shape approximation may provide sufficient information for surgical intervention.The results of our proof-of-concept study show that, algorithmically, such system is indeed realisable: a 3D reconstruction is possible from a small set of x-rays, with only a small computational load. A combination of real x-rays and simulated 3D data are used to evaluate the technique.","PeriodicalId":325699,"journal":{"name":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification and reconstruction of bullets from multiple X-rays\",\"authors\":\"Simon J. Perkins, P. Marais\",\"doi\":\"10.1145/1108590.1108610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework for the rapid detection and 3D localisation of bullets (or other compact shapes) from a sparse set of cross-sectional patient x-rays. The intention of this work is to assess a software architecture for an application specific alternative to conventional CT which can be leveraged in poor communities using less expensive technology. Of necessity such a system will not provide the diagnostic sophistication of full CT, but in many cases this added complexity may not be required. While a pair of x-rays can provide some 3D positional information to a clinician, such an assessment is qualitative and occluding tissue/bone may lead to an incorrect assessment of the internal location of the bullet.Our system uses a combination of model-based segmentation and CT-like back-projection to arrive at an approximate volume representation of the embedded shape, based on a sequence of x-rays which encompasses the affected area. Depending on the nature of the injury, such a 3D shape approximation may provide sufficient information for surgical intervention.The results of our proof-of-concept study show that, algorithmically, such system is indeed realisable: a 3D reconstruction is possible from a small set of x-rays, with only a small computational load. A combination of real x-rays and simulated 3D data are used to evaluate the technique.\",\"PeriodicalId\":325699,\"journal\":{\"name\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1108590.1108610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1108590.1108610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一个框架,用于从稀疏的横截面患者x射线中快速检测和3D定位子弹(或其他紧凑形状)。这项工作的目的是评估一种软件架构,用于替代传统CT的特定应用,这种软件架构可以使用更便宜的技术在贫困社区中加以利用。这种系统必然不能提供全CT的复杂诊断,但在许多情况下,这种增加的复杂性可能是不必要的。虽然一对x光片可以为临床医生提供一些3D位置信息,但这种评估是定性的,闭塞的组织/骨骼可能导致对子弹内部位置的错误评估。我们的系统结合了基于模型的分割和类似ct的反向投影,根据包含受影响区域的x射线序列,得到嵌入形状的近似体积表示。根据损伤的性质,这样的三维形状近似可以为手术干预提供足够的信息。我们的概念验证研究结果表明,从算法上讲,这样的系统确实是可以实现的:只需要很小的计算负荷,就可以从一小组x射线中进行3D重建。使用真实x射线和模拟三维数据的组合来评估该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and reconstruction of bullets from multiple X-rays
We present a framework for the rapid detection and 3D localisation of bullets (or other compact shapes) from a sparse set of cross-sectional patient x-rays. The intention of this work is to assess a software architecture for an application specific alternative to conventional CT which can be leveraged in poor communities using less expensive technology. Of necessity such a system will not provide the diagnostic sophistication of full CT, but in many cases this added complexity may not be required. While a pair of x-rays can provide some 3D positional information to a clinician, such an assessment is qualitative and occluding tissue/bone may lead to an incorrect assessment of the internal location of the bullet.Our system uses a combination of model-based segmentation and CT-like back-projection to arrive at an approximate volume representation of the embedded shape, based on a sequence of x-rays which encompasses the affected area. Depending on the nature of the injury, such a 3D shape approximation may provide sufficient information for surgical intervention.The results of our proof-of-concept study show that, algorithmically, such system is indeed realisable: a 3D reconstruction is possible from a small set of x-rays, with only a small computational load. A combination of real x-rays and simulated 3D data are used to evaluate the technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信