{"title":"n-p-n-p硅多层太阳能电池的模拟","authors":"A. Bouzidi, A. Bouazzi, B. Rezig","doi":"10.1109/ICM.2004.1434718","DOIUrl":null,"url":null,"abstract":"In this work, we simulate and optimize the photocurrent densities in a model of an n-p-n-p type thin film multilayer silicon solar cell. The equations giving the photocurrent density produced in each abscissa of the structure was developed. We used Matlab software to simulate and optimize the different parameters of the model. The results of simulation show that the optimized n-p-n-p silicon multilayer solar cell could deliver a photocurrent density of more than 47 mA/cm/sup 2/. We also show that the most important components of the total photocurrent densities are due to the minority carrier collection which happens on both side of the three space charge regions tailored inside the cell.","PeriodicalId":359193,"journal":{"name":"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simulation of a n-p-n-p silicon multilayer solar cell\",\"authors\":\"A. Bouzidi, A. Bouazzi, B. Rezig\",\"doi\":\"10.1109/ICM.2004.1434718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we simulate and optimize the photocurrent densities in a model of an n-p-n-p type thin film multilayer silicon solar cell. The equations giving the photocurrent density produced in each abscissa of the structure was developed. We used Matlab software to simulate and optimize the different parameters of the model. The results of simulation show that the optimized n-p-n-p silicon multilayer solar cell could deliver a photocurrent density of more than 47 mA/cm/sup 2/. We also show that the most important components of the total photocurrent densities are due to the minority carrier collection which happens on both side of the three space charge regions tailored inside the cell.\",\"PeriodicalId\":359193,\"journal\":{\"name\":\"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2004.1434718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2004.1434718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of a n-p-n-p silicon multilayer solar cell
In this work, we simulate and optimize the photocurrent densities in a model of an n-p-n-p type thin film multilayer silicon solar cell. The equations giving the photocurrent density produced in each abscissa of the structure was developed. We used Matlab software to simulate and optimize the different parameters of the model. The results of simulation show that the optimized n-p-n-p silicon multilayer solar cell could deliver a photocurrent density of more than 47 mA/cm/sup 2/. We also show that the most important components of the total photocurrent densities are due to the minority carrier collection which happens on both side of the three space charge regions tailored inside the cell.