Ken Gudan, S. Chemishkian, Jonathan J. Hull, Stewart J. Thomas, Joshua F. Ensworth, M. Reynolds
{"title":"一种最小输入功率为- 20dBm、镍氢电池存储的2.4GHz环境射频能量收集系统","authors":"Ken Gudan, S. Chemishkian, Jonathan J. Hull, Stewart J. Thomas, Joshua F. Ensworth, M. Reynolds","doi":"10.1109/RFID-TA.2014.6934191","DOIUrl":null,"url":null,"abstract":"We describe a radio frequency (RF) energy harvester and power management circuit that trickle charges a battery from incident power levels as low as -20dBm. We designed the harvester for the 2.4 GHz RF band to leverage the ubiquity of energy that is produced by Wi-Fi, Bluetooth, and other devices. This paper reports on the design and current status of the harvester and compares our performance to other published results. In this incident power regime, rectified voltages are low, so power management circuit operation in the 100mV regime is critical. This paper describes a novel rectenna design, boost converter, and battery charger for RF energy harvesting specifically tuned to this low-power regime. At -20dBm RF input power, the harvesting system (rectenna, boost converter, and battery charger) sources 5.8μJ into a rechargeable battery after 1 hour.","PeriodicalId":143130,"journal":{"name":"2014 IEEE RFID Technology and Applications Conference (RFID-TA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"A 2.4GHz ambient RF energy harvesting system with −20dBm minimum input power and NiMH battery storage\",\"authors\":\"Ken Gudan, S. Chemishkian, Jonathan J. Hull, Stewart J. Thomas, Joshua F. Ensworth, M. Reynolds\",\"doi\":\"10.1109/RFID-TA.2014.6934191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a radio frequency (RF) energy harvester and power management circuit that trickle charges a battery from incident power levels as low as -20dBm. We designed the harvester for the 2.4 GHz RF band to leverage the ubiquity of energy that is produced by Wi-Fi, Bluetooth, and other devices. This paper reports on the design and current status of the harvester and compares our performance to other published results. In this incident power regime, rectified voltages are low, so power management circuit operation in the 100mV regime is critical. This paper describes a novel rectenna design, boost converter, and battery charger for RF energy harvesting specifically tuned to this low-power regime. At -20dBm RF input power, the harvesting system (rectenna, boost converter, and battery charger) sources 5.8μJ into a rechargeable battery after 1 hour.\",\"PeriodicalId\":143130,\"journal\":{\"name\":\"2014 IEEE RFID Technology and Applications Conference (RFID-TA)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE RFID Technology and Applications Conference (RFID-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFID-TA.2014.6934191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE RFID Technology and Applications Conference (RFID-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID-TA.2014.6934191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 2.4GHz ambient RF energy harvesting system with −20dBm minimum input power and NiMH battery storage
We describe a radio frequency (RF) energy harvester and power management circuit that trickle charges a battery from incident power levels as low as -20dBm. We designed the harvester for the 2.4 GHz RF band to leverage the ubiquity of energy that is produced by Wi-Fi, Bluetooth, and other devices. This paper reports on the design and current status of the harvester and compares our performance to other published results. In this incident power regime, rectified voltages are low, so power management circuit operation in the 100mV regime is critical. This paper describes a novel rectenna design, boost converter, and battery charger for RF energy harvesting specifically tuned to this low-power regime. At -20dBm RF input power, the harvesting system (rectenna, boost converter, and battery charger) sources 5.8μJ into a rechargeable battery after 1 hour.