芙丝汀宝套装及其随机版本

A. Fan, Herv'e Queff'elec, M. Queff'elec
{"title":"芙丝汀宝套装及其随机版本","authors":"A. Fan, Herv'e Queff'elec, M. Queff'elec","doi":"10.4171/lem/1040","DOIUrl":null,"url":null,"abstract":"We study some number-theoretic, ergodic and harmonic analysis properties of the Furstenberg set of integers $S=\\{2^{m}3^{n}\\}$ and compare them to those of its random analogue $T$. In this half-expository work, we show for example that $S$ is \"Khinchin distributed\", is far from being Hartman-distributed while $T$ is, and that $S$ is a $\\Lambda(p)$ set for all $2<p<\\infty$ and that $T$ is a $p$-Rider set for all $p$ such that $4/3<p<2$. Measure-theoretic and probabilistic techniques, notably martingales, play an important role in this work.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Furstenberg set and its random version\",\"authors\":\"A. Fan, Herv'e Queff'elec, M. Queff'elec\",\"doi\":\"10.4171/lem/1040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study some number-theoretic, ergodic and harmonic analysis properties of the Furstenberg set of integers $S=\\\\{2^{m}3^{n}\\\\}$ and compare them to those of its random analogue $T$. In this half-expository work, we show for example that $S$ is \\\"Khinchin distributed\\\", is far from being Hartman-distributed while $T$ is, and that $S$ is a $\\\\Lambda(p)$ set for all $2<p<\\\\infty$ and that $T$ is a $p$-Rider set for all $p$ such that $4/3<p<2$. Measure-theoretic and probabilistic techniques, notably martingales, play an important role in this work.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了Furstenberg整数集$S=\{2^{m}3^{n}\}$的一些数论、遍历和调和分析性质,并与它的随机类似物$T$进行了比较。在这个半说明性的工作中,我们举例说明,$S$是“Khinchin分布”,远非hartman分布,而$T$是,$S$是$\Lambda(p)$集合,适用于所有$2本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
The Furstenberg set and its random version
We study some number-theoretic, ergodic and harmonic analysis properties of the Furstenberg set of integers $S=\{2^{m}3^{n}\}$ and compare them to those of its random analogue $T$. In this half-expository work, we show for example that $S$ is "Khinchin distributed", is far from being Hartman-distributed while $T$ is, and that $S$ is a $\Lambda(p)$ set for all $2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信