{"title":"新的计算效率的2.5D和3D光线跟踪算法建模传播环境","authors":"Zhijun Zhang, Z. Yun, M. Iskander","doi":"10.1109/APS.2001.958891","DOIUrl":null,"url":null,"abstract":"This paper presents the development of 2.5D and 3D extensions of a 2D procedure that is described in an earlier paper (see Zhang, Z. et al., Electronics Letters, vol.36, no.5, p.464-5, 2000) for modeling propagation environments. These methods are based on dividing the propagation region into cells whereby the number of cells is decided by the number of vertices of structures instead of their dimensions. Results from the 2.5D and 3D methods show significant improvement in computational efficiency. Specifically, the CPU time for the 2.5D method is less than 5% of that of the visibility ray tracing method. Accuracy, on the other hand, is related to that of a traditional ray tracing method and includes accounting for reflected, transmitted and diffracted rays.","PeriodicalId":159827,"journal":{"name":"IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"New computationally efficient 2.5D and 3D ray tracing algorithms for modeling propagation environments\",\"authors\":\"Zhijun Zhang, Z. Yun, M. Iskander\",\"doi\":\"10.1109/APS.2001.958891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of 2.5D and 3D extensions of a 2D procedure that is described in an earlier paper (see Zhang, Z. et al., Electronics Letters, vol.36, no.5, p.464-5, 2000) for modeling propagation environments. These methods are based on dividing the propagation region into cells whereby the number of cells is decided by the number of vertices of structures instead of their dimensions. Results from the 2.5D and 3D methods show significant improvement in computational efficiency. Specifically, the CPU time for the 2.5D method is less than 5% of that of the visibility ray tracing method. Accuracy, on the other hand, is related to that of a traditional ray tracing method and includes accounting for reflected, transmitted and diffracted rays.\",\"PeriodicalId\":159827,\"journal\":{\"name\":\"IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229)\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2001.958891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2001.958891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
本文介绍了在早期论文中描述的2D程序的2.5D和3D扩展的发展(见Zhang, Z. et al., Electronics Letters, vol.36, no. 6)。5, p.464-5, 2000)建模传播环境。这些方法是基于将传播区域划分为细胞,细胞的数量由结构的顶点数量而不是它们的尺寸决定。2.5D和3D方法的计算效率显著提高。具体来说,2.5D方法的CPU时间不到可见光光线追踪方法的5%。另一方面,准确度与传统的光线追踪方法有关,包括对反射、透射和衍射光线的计算。
New computationally efficient 2.5D and 3D ray tracing algorithms for modeling propagation environments
This paper presents the development of 2.5D and 3D extensions of a 2D procedure that is described in an earlier paper (see Zhang, Z. et al., Electronics Letters, vol.36, no.5, p.464-5, 2000) for modeling propagation environments. These methods are based on dividing the propagation region into cells whereby the number of cells is decided by the number of vertices of structures instead of their dimensions. Results from the 2.5D and 3D methods show significant improvement in computational efficiency. Specifically, the CPU time for the 2.5D method is less than 5% of that of the visibility ray tracing method. Accuracy, on the other hand, is related to that of a traditional ray tracing method and includes accounting for reflected, transmitted and diffracted rays.