基于图分区的风电系统拥塞管理分区备用分配

S. Abedi, Miao He, M. Giesselmann
{"title":"基于图分区的风电系统拥塞管理分区备用分配","authors":"S. Abedi, Miao He, M. Giesselmann","doi":"10.1109/NAPS.2016.7747960","DOIUrl":null,"url":null,"abstract":"Real-time actuation of scheduled reserve capacity in power system operations with high penetration of wind power is prone to failure on account of unexpected shortcomings in network transfer capability. In this paper, a graph partitioning-based reserve zoning method is incorporated into the security-constrained unit commitment to improve the deliverability of operating reserves in a reserve zone and mitigate possible congestions caused by uncertain wind power. A graph representation of power system is proposed in which the edge weights are quantified by the likelihood of secure transmission utilization for each line. The probability distribution of line flows are characterized by the uncertainty of multiple correlated wind farm output forecasts as well as credible line outage contingencies reflected on the line flows using distribution factors. The minimum k-cut problem using the Gomory-Hu equivalent tree is addressed as a simple and efficient method to solve the NP-complete partitioning problem. The resultant zones can assure reduced risk of congested operating conditions and thus, provide a new approach to efficient management of intra-zonal congestions.","PeriodicalId":249041,"journal":{"name":"2016 North American Power Symposium (NAPS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Graph partitioning-based zonal reserve allocation for congestion management in power systems with wind resources\",\"authors\":\"S. Abedi, Miao He, M. Giesselmann\",\"doi\":\"10.1109/NAPS.2016.7747960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time actuation of scheduled reserve capacity in power system operations with high penetration of wind power is prone to failure on account of unexpected shortcomings in network transfer capability. In this paper, a graph partitioning-based reserve zoning method is incorporated into the security-constrained unit commitment to improve the deliverability of operating reserves in a reserve zone and mitigate possible congestions caused by uncertain wind power. A graph representation of power system is proposed in which the edge weights are quantified by the likelihood of secure transmission utilization for each line. The probability distribution of line flows are characterized by the uncertainty of multiple correlated wind farm output forecasts as well as credible line outage contingencies reflected on the line flows using distribution factors. The minimum k-cut problem using the Gomory-Hu equivalent tree is addressed as a simple and efficient method to solve the NP-complete partitioning problem. The resultant zones can assure reduced risk of congested operating conditions and thus, provide a new approach to efficient management of intra-zonal congestions.\",\"PeriodicalId\":249041,\"journal\":{\"name\":\"2016 North American Power Symposium (NAPS)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2016.7747960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2016.7747960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

风电渗透率高的电力系统运行中,由于电网传输能力的非预期缺陷,调度备用容量的实时执行容易出现故障。本文将基于图划分的储备分区方法引入到安全约束的机组承诺中,以提高保护区运行储量的可交付性,缓解风电不确定可能造成的拥塞。提出了一种电力系统的图表示,其中边权由每条线路安全传输利用率的可能性来量化。线流概率分布的特点是多个相关风电场输出预测的不确定性,以及可靠的停电意外事件通过分布因子反映在线流上。利用Gomory-Hu等价树求解最小k割问题是解决np完全划分问题的一种简单有效的方法。由此产生的区域可以确保降低拥堵操作条件的风险,从而为有效管理区域内拥堵提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph partitioning-based zonal reserve allocation for congestion management in power systems with wind resources
Real-time actuation of scheduled reserve capacity in power system operations with high penetration of wind power is prone to failure on account of unexpected shortcomings in network transfer capability. In this paper, a graph partitioning-based reserve zoning method is incorporated into the security-constrained unit commitment to improve the deliverability of operating reserves in a reserve zone and mitigate possible congestions caused by uncertain wind power. A graph representation of power system is proposed in which the edge weights are quantified by the likelihood of secure transmission utilization for each line. The probability distribution of line flows are characterized by the uncertainty of multiple correlated wind farm output forecasts as well as credible line outage contingencies reflected on the line flows using distribution factors. The minimum k-cut problem using the Gomory-Hu equivalent tree is addressed as a simple and efficient method to solve the NP-complete partitioning problem. The resultant zones can assure reduced risk of congested operating conditions and thus, provide a new approach to efficient management of intra-zonal congestions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信