一元范畴的亲和

Youssef Mousaaid, Alistair Savage
{"title":"一元范畴的亲和","authors":"Youssef Mousaaid, Alistair Savage","doi":"10.5802/jep.158","DOIUrl":null,"url":null,"abstract":"We define the affinization of an arbitrary monoidal category $\\mathcal{C}$, corresponding to the category of $\\mathcal{C}$-diagrams on the cylinder. We also give an alternative characterization in terms of adjoining dot generators to $\\mathcal{C}$. The affinization formalizes and unifies many constructions appearing in the literature. In particular, we describe a large number of examples coming from Hecke-type algebras, braids, tangles, and knot invariants. When $\\mathcal{C}$ is rigid, its affinization is isomorphic to its horizontal trace, although the two definitions look quite different. In general, the affinization and the horizontal trace are not isomorphic.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Affinization of monoidal categories\",\"authors\":\"Youssef Mousaaid, Alistair Savage\",\"doi\":\"10.5802/jep.158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the affinization of an arbitrary monoidal category $\\\\mathcal{C}$, corresponding to the category of $\\\\mathcal{C}$-diagrams on the cylinder. We also give an alternative characterization in terms of adjoining dot generators to $\\\\mathcal{C}$. The affinization formalizes and unifies many constructions appearing in the literature. In particular, we describe a large number of examples coming from Hecke-type algebras, braids, tangles, and knot invariants. When $\\\\mathcal{C}$ is rigid, its affinization is isomorphic to its horizontal trace, although the two definitions look quite different. In general, the affinization and the horizontal trace are not isomorphic.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们定义了任意一元范畴$\mathcal{C}$的仿射,它对应于柱面上$\mathcal{C}$-图的范畴。我们还给出了$\mathcal{C}$中相邻点生成器的另一种表征。亲和形式化并统一了文学中出现的许多结构。特别地,我们描述了大量来自hecke型代数、辫状、缠结和结不变量的例子。当$\mathcal{C}$是刚性时,它的亲和与它的水平轨迹是同构的,尽管这两个定义看起来非常不同。一般来说,亲和和水平迹线是不同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affinization of monoidal categories
We define the affinization of an arbitrary monoidal category $\mathcal{C}$, corresponding to the category of $\mathcal{C}$-diagrams on the cylinder. We also give an alternative characterization in terms of adjoining dot generators to $\mathcal{C}$. The affinization formalizes and unifies many constructions appearing in the literature. In particular, we describe a large number of examples coming from Hecke-type algebras, braids, tangles, and knot invariants. When $\mathcal{C}$ is rigid, its affinization is isomorphic to its horizontal trace, although the two definitions look quite different. In general, the affinization and the horizontal trace are not isomorphic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信