从股票预测到财务相关性:重新利用注意力权重来评估没有手动注释的新闻相关性

Luciano Del Corro, Johannes Hoffart
{"title":"从股票预测到财务相关性:重新利用注意力权重来评估没有手动注释的新闻相关性","authors":"Luciano Del Corro, Johannes Hoffart","doi":"10.18653/v1/2021.econlp-1.6","DOIUrl":null,"url":null,"abstract":"We present a method to automatically identify financially relevant news using stock price movements and news headlines as input. The method repurposes the attention weights of a neural network initially trained to predict stock prices to assign a relevance score to each headline, eliminating the need for manually labeled training data. Our experiments on the four most relevant US stock indices and 1.5M news headlines show that the method ranks relevant news highly, positively correlated with the accuracy of the initial stock price prediction task.","PeriodicalId":166554,"journal":{"name":"Proceedings of the Third Workshop on Economics and Natural Language Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"From Stock Prediction to Financial Relevance: Repurposing Attention Weights to Assess News Relevance Without Manual Annotations\",\"authors\":\"Luciano Del Corro, Johannes Hoffart\",\"doi\":\"10.18653/v1/2021.econlp-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method to automatically identify financially relevant news using stock price movements and news headlines as input. The method repurposes the attention weights of a neural network initially trained to predict stock prices to assign a relevance score to each headline, eliminating the need for manually labeled training data. Our experiments on the four most relevant US stock indices and 1.5M news headlines show that the method ranks relevant news highly, positively correlated with the accuracy of the initial stock price prediction task.\",\"PeriodicalId\":166554,\"journal\":{\"name\":\"Proceedings of the Third Workshop on Economics and Natural Language Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third Workshop on Economics and Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.econlp-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Workshop on Economics and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.econlp-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种方法来自动识别财务相关的新闻使用股票价格走势和新闻标题作为输入。该方法重新利用最初训练用于预测股票价格的神经网络的注意力权重,为每个标题分配相关性分数,从而消除了手动标记训练数据的需要。我们在四个最相关的美国股票指数和150万条新闻标题上的实验表明,该方法对相关新闻的排名很高,与初始股价预测任务的准确性呈正相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Stock Prediction to Financial Relevance: Repurposing Attention Weights to Assess News Relevance Without Manual Annotations
We present a method to automatically identify financially relevant news using stock price movements and news headlines as input. The method repurposes the attention weights of a neural network initially trained to predict stock prices to assign a relevance score to each headline, eliminating the need for manually labeled training data. Our experiments on the four most relevant US stock indices and 1.5M news headlines show that the method ranks relevant news highly, positively correlated with the accuracy of the initial stock price prediction task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信