在结构图上使用路径轮廓的概率数据流分析

A. Ramamurthi, Subhajit Roy, Y. Srikant
{"title":"在结构图上使用路径轮廓的概率数据流分析","authors":"A. Ramamurthi, Subhajit Roy, Y. Srikant","doi":"10.1145/2025113.2025206","DOIUrl":null,"url":null,"abstract":"Speculative optimizations are increasingly becoming popular for improving program performance by allowing transformations that benefit frequently traversed program paths. Such optimizations are based on dataflow facts which are mostly true, though not always safe. Probabilistic dataflow analysis frameworks infer such facts about a program, while also providing the probability with which a fact is likely to be true. We propose a new Probabilistic Dataflow Analysis Framework which uses path profiles and information about the nesting structure of loops to obtain improved probabilities of dataflow facts.","PeriodicalId":184518,"journal":{"name":"ESEC/FSE '11","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probabilistic dataflow analysis using path profiles on structure graphs\",\"authors\":\"A. Ramamurthi, Subhajit Roy, Y. Srikant\",\"doi\":\"10.1145/2025113.2025206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speculative optimizations are increasingly becoming popular for improving program performance by allowing transformations that benefit frequently traversed program paths. Such optimizations are based on dataflow facts which are mostly true, though not always safe. Probabilistic dataflow analysis frameworks infer such facts about a program, while also providing the probability with which a fact is likely to be true. We propose a new Probabilistic Dataflow Analysis Framework which uses path profiles and information about the nesting structure of loops to obtain improved probabilities of dataflow facts.\",\"PeriodicalId\":184518,\"journal\":{\"name\":\"ESEC/FSE '11\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESEC/FSE '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2025113.2025206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESEC/FSE '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2025113.2025206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

推测性优化越来越流行,因为它允许对经常遍历的程序路径有利的转换,从而提高程序性能。这种优化基于数据流事实,这些事实大多是正确的,尽管并不总是安全的。概率数据流分析框架推断有关程序的这些事实,同时还提供事实可能为真的概率。我们提出了一种新的概率数据流分析框架,该框架利用路径轮廓和循环嵌套结构信息来获得数据流事实的改进概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic dataflow analysis using path profiles on structure graphs
Speculative optimizations are increasingly becoming popular for improving program performance by allowing transformations that benefit frequently traversed program paths. Such optimizations are based on dataflow facts which are mostly true, though not always safe. Probabilistic dataflow analysis frameworks infer such facts about a program, while also providing the probability with which a fact is likely to be true. We propose a new Probabilistic Dataflow Analysis Framework which uses path profiles and information about the nesting structure of loops to obtain improved probabilities of dataflow facts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信